
ProofOptimizer: Training Language Models to
Simplify Proofs without Human Demonstrations

Alex Gu gua@mit.edu
Meta FAIR & MIT CSAIL

Bartosz Piotrowski bpio@meta.com
Meta FAIR

Fabian Gloeckle fgloeckle@meta.com
Meta FAIR & École des Ponts Paris

Kaiyu Yang kaiyuy@meta.com
Meta FAIR

Aram H. Markosyan aram.math@gmail.com
Meta FAIR

Abstract

Neural theorem proving has advanced rapidly in the past year, reaching IMO gold-
medalist capabilities and producing formal proofs that span thousands of lines. Al-
though such proofs are mechanically verified by formal systems like Lean, their excessive
length renders them difficult for humans to comprehend and limits their usefulness for
mathematical insight. Proof simplification is therefore a critical bottleneck. Yet, training
data for this task is scarce, and existing methods—mainly agentic scaffolding with
off-the-shelf LLMs—struggle with the extremely long proofs generated by RL-trained
provers. We introduce ProofOptimizer, the first language model trained to simplify Lean
proofs without requiring additional human supervision. ProofOptimizer is trained via
expert iteration and reinforcement learning, using Lean to verify simplifications and pro-
vide training signal. At inference time, it operates within an iterative proof-shortening
workflow, progressively reducing proof length. Experiments show that ProofOptimizer
substantially compresses proofs generated by state-of-the-art RL-trained provers on
standard benchmarks, reducing proof length by 87% on miniF2F, 57% on PutnamBench,
and 49% on Seed-Prover’s IMO 2025 proofs. Beyond conciseness, the simplified proofs
check faster in Lean and further improve downstream prover performance when reused
as training data for supervised finetuning.

1

Contents

1 Introduction 4

2 Proof Simplification: Task and Metrics 5

3 ProofOptimizer: LLMs for Proof Simplification 6

3.1 Training . 6

3.1.1 ProofOptimizer-ExpIt: Expert Iteration . 7

3.1.2 ProofOptimizer-RL: Online Reinforcement Learning 7

3.2 Inference-Time Techniques . 7

4 Experiments 8

4.1 Expert Iteration vs. RL vs. Test-Time RL . 8

4.2 Analysis of Repair with Execution Feedback . 9

4.3 Iterative Proof Shortening . 10

5 Additional Benefits of Proof Simplification 11

5.1 Training on Simplified Proofs Improves Generation 11

5.2 Simplified Proofs Have a Shorter Execution Time . 12

5.2.1 Optimizing for Heartbeats instead of Proof Length 13

6 Related Works 13

7 Conclusion 14

8 Acknowledgments 14

A Lean Base Model and Proof Simplification Data Details 20

A.1 General Base Model for Lean . 20

A.2 Generating a Dataset of Theorems and Proofs for Shortening 20

A.3 Statistics of Proof Simplification Training Dataset . 23

B Training Metrics throughout RL 26

C Full Results and Extended Analysis of Iterative Proof Shortening 27

2

C.1 Table of Iterative Proof Shortening Results . 27

C.2 Effect of k on min@k and red@k throughout simplification 27

C.3 Details on Seed-Prover IMO Proof Shortening . 28

D Comparison with Qwen2.5, GPT-4o, and Gemini-2.5-Pro 30

E Full Results and Extended Analysis of Repair with Execution Feedback 32

F Evaluation Dataset Details 35

G Examples of Proofs Simplified by ProofOptimizer 37

H Proof Speedup and Slowdown Analysis and Examples 42

H.1 Iterative Proof Shortening Results with Heartbeat Metric 42

H.2 Examples of Proof Speedup and Slowdown after Simplification 43

I Derivation of Closed Form for min@k and max@k 47

J Hyperparameters 48

K Prompts 49

K.1 Proof Simplification Prompt . 49

K.2 Proof Sketching Prompts . 49

K.3 Goedel-Prover Repair Prompt . 50

L Python Code for Proof Length 52

3

1 Introduction

Theorem proving in formal environments such as Lean (de Moura et al., 2015) provides an excellent
testbed for training large language models (LLMs) in mathematical reasoning via reinforcement
learning (RL). Since Lean can mechanically verify proofs, it filters hallucinations and provides
reliable reward signals, and enables enables unlimited high-quality synthetic reasoning data.
Leveraging these benefits, LLMs finetuned with RL have achieved near gold-medal performance
on the International Mathematical Olympiad (IMO) (Chen et al., 2025) and shown strong results on
difficult college-level benchmarks like PutnamBench (Lin et al., 2025b).

However, RL-trained provers often generate proofs that are correct but excessively long and
inscrutable. Since their only reward signal is the correctness of generated proofs, the resulting
models produce proofs that are correct yet suboptimal: convoluted, bloated with redundant steps,
or reliant on unnecessarily strong automation where a simple step would suffice. For example,
Seed-Prover (Chen et al., 2025)’s Lean proof of IMO 2025 P1 consists of 4,357 lines of code, 16x
longer (by character count) than its informal counterpart. Such proofs pose several practical
drawbacks: they are (1) difficult for humans to comprehend, limiting their value as a source of
mathematical insight; (2) less suitable as synthetic training data, since models may struggle to learn
from convoluted proofs; and (3) computationally inefficient to compile in Lean, which is especially
problematic when integrated into existing formal libraries like mathlib (mathlib Community, 2019).

These challenges highlight the need for proof simplification: transforming existing formal proofs into
simpler forms while preserving correctness. In this work, we adopt a natural notion of simplicity: proof
length, measured by the number of Lean tokens. However, our approach is agnostic to the choice of
simplicity metric: it is not restricted to proof length, but applies to any automatically computable
measure (Kinyon, 2018).

Prior work on proof simplification (Ahuja et al., 2024) focuses on agentic scaffolding around
API-only LLMs such as GPT-4o. While these methods can shorten human-written Lean proofs,
they are ineffective at simplifying the long proofs generated by SoTA RL-trained LLM provers such
as Seed-Prover and Goedel-Prover-V2 (Lin et al., 2025b), precisely the setting where simplification
is most valuable. A natural alternative is to finetune LLMs directly for proof simplification, but
progress in this direction is limited by the lack of suitable training data, namely aligned pairs of
proofs before and after simplification.

We introduce ProofOptimizer, an LLM-based system for simplifying long and convoluted proofs
in Lean. ProofOptimizer integrates three components: (i) a symbolic Lean linter that identifies
and removes redundant steps, (ii) a 7B parameter language model finetuned specifically for proof
simplification, and (iii) an iterative inference-time algorithm for progressively shortening proofs.
Given an input proof, the Lean linter first eliminates the most obvious redundancies. The language
model then generates multiple candidate simplifications, and the iterative algorithm repeatedly
applies the model to the currently shortest proof, further reducing its length. Training follows two
paradigms. In expert iteration, the model proposes simplifications that are verified by Lean and
incorporated into the training data for supervised finetuning. In reinforcement learning, proof
length and correctness serve as the reward signal. Both approaches enable continual improvement
without requiring any human-annotated simplification data.

First, we evaluate ProofOptimizer on long proofs generated by state-of-the-art neural theo-
rem provers. Specifically, we consider proofs produced by Goedel-Prover-V2 on two standard
benchmarks—MiniF2F (Zheng et al., 2021) and PutnamBench—as well as four proofs released

4

https://github.com/ByteDance-Seed/Seed-Prover/blob/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/IMO2025/P1.lean
https://github.com/ByteDance-Seed/Seed-Prover/blob/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/p1_proof.pdf

by Seed-Prover for IMO 2025. Our final models achieve significant results (Fig. 1), shortening
MiniF2F proofs by an average of 63% in a single shot and PutnamBench proofs by 26% with 32
attempts, substantially outperforming Gemini-2.5-Pro (Sec. 4.1). At inference time, test-time RL
improves single-shot miniF2F performance to 72%. With with iterative shortening, we achieve
further per-proof average reductions of 87% (MiniF2F) and 57% (PutnamBench) and reduce the
length of three out of four Seed-Prover IMO 2025 proofs by more than half.

Second, we conduct ablation studies to evaluate the effect of key design choices. During training,
RL achieves the best single-sample performance but reduces multi-sample diversity. At inference
time, using the same RL recipe further improves single-shot performance (Sec. 4.1). Repairing
incorrect simplifications from execution feedback with Goedel-Prover-V2 effectively corrects errors,
but leads to repaired proofs even longer than the originals (Sec. 4.2). Overall, iterative proof
shortening offers the best balance between performance and diversity, achieving the strongest
results (Sec. 4.3).

Third, we conduct preliminary experiments suggesting two downstream benefits of proof short-
ening. Training our base model on shortened proofs leads to 2% better performance on miniF2F
relative to training on unshortened proofs (Sec. 5.1). Also, shortening proofs often decreases their
execution time, with 28% of proofs showing at least a 1.5x speedup after shortening (Sec. 5.2).

theorem
in by

have in by

have in by

have by

intro
have by nlinarith

have by

ring_nf

nlinarith []

have by

rw [

field_simp [] ring_nf field_simp [ring_nf

congr

ext
rw []

rw []

have in by

rw []

linarith []

exact

: 22/7 - Real.pi = ∫ x (0)..1, x^4 * (1 - x)^4 / (1 + x^2) :=

 h_main : (∫ x (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = 22/7 - Real.pi :=
 h₁ : (∫ x (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = (∫ x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2)) :=
 h₁₁ : ∀ (x : ℝ), x^4 * (1 - x)^4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) - 4 / (1 + x^2) :=
 x

 h₁₂ : (1 + x^2 : ℝ) ≠ 0 :=
 h₁₃ : x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4 :=

 <;>

 sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)
 h₁₄ : x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : ℝ) * (1 + x^2) - 4) / (1 + x^2) :=
 h₁₃]

 rw [h₁₄]

 h₁₂ <;> <;> h₁₂] <;>

 x

 h₁₁ x
 h₁

 h_final : 22/7 - Real.pi = ∫ x (0)..1, x^4 * (1 - x)^4 / (1 + x^2) :=
 h_main
 <;>

 Real.pi_pos

 h_final

putnam_1968_a1

-- (...70 lines omitted)

theorem
: 22/7 - Real.pi = ∫ x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) :=

 ∀ x : ℝ, x ^ 4 * (1 - x) ^ 4 / (1 + x ^2) =

 (x ^6 - 4 * x ^5 + 5 * x ^4 -

 4 * x ^2 + 4 - 4 / (1 + x ^2))
 x

 <;> Real.pi_pos

putnam_1968_a1

by

 simp_rw [show

by

intro
field_simp

ring]

 ring_nf

 norm_num

linarith []

Before ProofOptimizer After ProofOptimizer

Lean Base Model

Average Reduction: 87% (miniF2F), 57% (PutnamBench), 49% (Seed-Prover IMO 2025)

ProofOptimizer

(Expert Iteration)

ProofOptimizer

(Online RL)

Test-Time RL

Proof Repair

Iterative Shortening

Symbolic Linter
Qwen-2.5-Instruct 7B

Inference-TimeTraining-TimeFine-Tuning

Figure 1: Overview of our pipeline. ProofOptimizer reduces the shortest generated proof of a
Putnam problem from 1097 to 76 tokens.

2 Proof Simplification: Task and Metrics

Task Definition We formalize the proof simplification task as minimizing the complexity of a
given proof. Specifically, for a valid formal statement s with proof p, the goal is to produce an
alternative proof p∗ of s that minimizes a complexity measure L:

5

p∗ = arg min
x proves s

L(x)

Our method is agnostic to the choice of complexity measure L, provided that it is deterministic
and can be automatically computed from the proof. This flexibility encompasses the metrics used
in prior work (Ahuja et al., 2024). In the rest of this paper, we adopt proof length as the measure
of complexity, defined as the number of tokens produced by a Lean-specific tokenizer. Our proof
length measure correlates with character count but does not penalize long identifier names, and it
ignores comments and line breaks. We denote the length of a proof x by |x|, i.e., L(x) = |x|.

Evaluation Metrics Given an original proof p and k candidate simplifications generated by
the model, p′1, p′2, . . . , p′k, we define li = min(|p|, |p′i|) if p′i is a valid proof and li = |p| otherwise.
(Intuitively, an invalid attempt reverts to the original proof length). We evaluate proof simplification
using two metrics:

• min @k ≜ mini {li} denotes the minimum shortened proof length (lower is better).

• red@k ≜ maxi

{
|p|−li
|p|

}
= 1− min@k

|p| denotes the maximum relative proof length reduction
from the original proof (higher is better).

Note that these metrics may not always be correlated: a method that only excels at shortening long
proofs has a lower min@k and red@k than one that only excels at shortening short proofs. As with
the pass@k metric (Chen et al., 2021), we report our metrics via an unbiased estimator using n > k
samples (see Appendix I). We average min@k and red@k across samples in a dataset to get overall
length and reduction metrics.

3 ProofOptimizer: LLMs for Proof Simplification

3.1 Training

Lean Base Model First, we train a general-purpose Lean model by fine-tuning
Qwen-2.5-7B-Instruct on a combination of five tasks: natural language problem solving, Lean
4 code completion, auto-formalization (problems and solutions), formal theorem proving, and
tactic/proof state prediction.

Dataset for Proof Simplification We employ a four-stage pipeline to generate high-quality proof
simplification training data.

1. Problem Collection: We first compile a dataset of theorem proving problems from Goedel-Pset,
filtering out simple computational problems. Each problem consists of a natural language
problem, solution, and Lean problem statement.

2. Proof Sketching: We train a model that formalizes a problem’s natural language solution into a
Lean proof sketch consisting of a few high-level proof steps (usually 2-10) with lower level
details omitted and filled in with Lean’s sorry tactic.

3. Theorem Extraction and Filtering: For each proof sketch, we extract each proof step into its own
separate theorem. At the core, we are taking longer proofs and breaking them down into
separate sub-theorems. We collect a total of 518K theorems this way. As we found some of
these theorems to be trivial, we design an automation tactic to filter these out, leaving 307K
theorems remaining.

6

4. Proof Generation: We use Goedel-Prover-V2-32B to generate proofs of these theorems. The
model successfully produces Lean proofs of 145K theorems, which we use as our dataset for
training.

For more details about our base model and dataset collection, see Appendix A. Next, we describe
our two training recipes: expert iteration and online reinforcement learning.

3.1.1 ProofOptimizer-ExpIt: Expert Iteration

We leverage a STaR-like (Zelikman et al., 2022) iterative training algorithm to improve our model.
At a high level, we start with our base model π0 and the collection of 145K proofs P0. At each
iteration, we attempt to simplify each proof, train our model on successful proof simplifications,
and use the collection of simplified proofs as seed proofs for the next iteration. More precisely, at
each iteration i, we do the following:

1. Sample: For each proof x ∈ Pi, use πi to sample 4 simplifications Yp ≜ {y1
x, y2

x, y3
x, y4

x} ∼ πi(x).

2. Filter: Use the Lean compiler to find the shortest correct simplification yx ∈ {x} ∪Yx. Create
a training dataset of proof simplifications Di = {(x, yx) | len(yx) ≤ 0.8 · len(x), x ∈ Pi}. The
length constraint is designed to encourage the model to learn more substantial simplifications
rather than trivial ones. For iterations after the first, as x may have been simplified from a
more complex proof x′ ∈ P0, we also add (x′, yx) pairs to Di, which are valid and larger proof
simplifications. Also, collect simplified proofs πi+1 = {sx | x ∈ Pi} for the next iteration.

3. Train: Fine-tune πi on Di to get πi+1.

3.1.2 ProofOptimizer-RL: Online Reinforcement Learning

In addition to expert iteration as described in the previous section, we train a proof optimizer model
with online reinforcement learning. Using the same dataset as in expert iteration, the reinforcement
learning task consists in producing a valid but shorter proof y for a statement given an initial proof
x. The reward is defined as the relative shortening R(x, y) = |y|−|x|

|x| if y is valid and |y| ≤ |x|, and
R(x, y) = 0 otherwise. We employ an asynchronous variant of the GRPO algorithm (Shao et al.,
2024) with advantage Ai = Ri − 1

k ∑j≤k Rj baselined with the average reward of k = 8 samples,
no advantage normalization by standard deviation (Liu et al., 2025b), no KL regularization, and
omitting sequences with zero advantage.

3.2 Inference-Time Techniques

First, we implement a symbolic linter that removes extraneous tactics via Lean’s
linter.unusedTactic linter, which detects tactics that do not change the proof state and provides
messages like ’norm num’ tactic does nothing. We then compare the following techniques on
the linted proofs:

• Test-Time RL: We use the setup described in Section 3.1.2 and perform reinforcement learning
on our two evaluation sets (jointly). Our test-time RL keeps the input proof fixed, meaning
improvements occur solely in the model’s parameters.

7

• Repair with Execution Feedback: In this scheme, if ProofOptimizer fails to simplify a proof,
we collect the execution feedback and ask Goedel-Prover-V2-32B to repair the proof with
the error messages. Then, we apply the symbolic linter on the new proofs to further shorten
successful repairs.

• Iterative Proof Shortening: For a given proof, we sample k candidate shortenings and take
the shortest correct one. Then, we sample k shortenings of the new proof, take the shortest
correct one – and so on.

4 Experiments

For all evaluations, we use proofs generated by Goedel-Prover-V2 (Lin et al., 2025a) on two popular
datasets in formal math, miniF2F (Zheng et al., 2021) and PutnamBench (Tsoukalas et al., 2024).
For miniF2F, we use n = 194 proofs (average length 334), and for PutnamBench, we use n = 75
proofs (average length 1468). More details and examples of proofs in our evaluation set can be
found in Appendix F.

4.1 Expert Iteration vs. RL vs. Test-Time RL

First, we compare our two training schemes: expert iteration and RL. Starting from our Lean base
model, we train ProofOptimizer-ExpIt by performing three rounds of expert iteration (Sec. 3.1.1) and
ProofOptimizer-RL by performing online RL (Sec. 3.1.2) after two rounds of expert iteration. Table 1
shows min@k and red@k scores with respect to linted proofs. We observe steady improvements
during each round of expert iteration for both @1 and @32 metrics. Our final model outperforms
Gemini-2.5-Pro, a strong reasoning model, even when given proof state annotations similar to
Chain-of-States in ImProver (Ahuja et al., 2024).

Next, we see that ProofOptimizer-RL significantly improves single sample (@1) metrics at the
expense of diversity collapse, an issue commonly identified during RL training (Gehring et al.,
2024; Walder and Karkhanis, 2025; Yue et al., 2025). In Fig. 2 (a, b), we show the evolution of red@1
during training, observing that miniF2F reduction steadily rises while PutnamBench reduction
experiences oscillations. This tension is likely because the distribution of training data is more
similar in length to miniF2F than PutnamBench, which has a mean proof length of 4x that of the
training set.

Finally, we find that test-time RL leads to even further improvements on min@1 and red@1. This is
expected, as the model is able to directly tune its weights to learn from successful simplifications
at test-time. However, like ProofOptimizer-RL, we observe an even smaller gap between @1 and
@32 metrics. In Fig. 2 (c, d), we observe a much more stable evaluation red@1 curve because the
distribution gap between the training and evaluation sets is eliminated.

8

Table 1: Min@k and Red@k throughout expert iteration and online RL. Our RL model has strong
@1 results, while our ExpIt model has strong @32 results. RL metrics are Gaussian-smoothed.

Dataset Category Model Min@1 ↓ Min@32 ↓ Red@1 ↑ Red@32 ↑

miniF2F

Linted 302 0.0%

Gemini-2.5-Pro 280 207 24.3% 57.2%
Gemini-2.5-Pro + States 283 207 26.4% 58.7%

Base (7B) 283 202 17.6% 56.2%

ExpIt
Base + It 1 266 178 33.4% 67.0%
Base + It 2 251 166 45.1% 70.6%

ProofOptimizer-ExpIt 241 153 49.0% 72.3%

RL
ProofOptimizer-RL 190 152 63.6% 70.9%
It 2 + Test-Time RL 160 154 72.5% 73.4%

Putnam
Bench

Linted 1359 0.0%

Gemini-2.5-Pro 1348 1303 5.5% 18.0%
Gemini-2.5-Pro + States 1371 1319 6.1% 19.2%

Base (7B) 1341 1222 3.9% 20.5%

ExpIt
Base + It 1 1341 1215 5.2% 22.5%
Base + It 2 1335 1186 6.9% 24.7%

ProofOptimizer-ExpIt 1328 1161 8.2% 26.3%

RL
ProofOptimizer-RL 1303 1258 14.9% 21.1%

It 2 + Test-Time RL 1260 1255 23.8% 24.2%

0 50 100 150
Step (k)

50

55

60

65

R
el

at
iv

e
sh

or
te

ni
ng

 (%
)

(a) miniF2F (train)

0 50 100 150
Step (k)

10

12

14

16

(b) Putnam (train)

0 1 2 3 4 5
Step (k)

50

55

60

65

70

(c) miniF2F (test-time)

0 1 2 3 4 5
Step (k)

10

15

20

(d) Putnam (test-time)

Figure 2: Evolution of proof reduction (red@1) during RL training (a, b) and test-time RL (c, d).
We use Gaussian smoothing (σ = 5 evaluation intervals for RL training and σ = 3 for test-time RL).
See Fig. 9 for the corresponding red@32 metrics.

4.2 Analysis of Repair with Execution Feedback

As described in Sec. 3.2, we (1) sample 64 simplifications for each proof with ProofOptimizer-ExpIt,
(2) repair incorrect proofs with Goedel-Prover-V2-32B, and (3) shorten successful repairs with
our linter. Overall, we find while repair with execution feedback leads to improvements, it
underperforms resampling because repaired proofs are often even longer than the original
proofs. Fig. 3 (left) shows the average proof length and reduction % after sampling, repair, and
linting. We our linter to be effective on repaired proofs, decreasing the average repaired proof
length from 644 → 576 (miniF2F) and 877 → 788 (PutnamBench). In Fig. 3 (right), we plot the
proof length of the original proofs (before Step 1) against simplified proofs (Step 1) and repaired

9

Table 2: Step-by-step success rates, revealing the main bottleneck of long repaired proofs.

Dataset Simplification Repair Shorter than best (before/after linter)

miniF2F 7852
12416 (63.2%) 2840

4564 (62.2%) 76
2840 →

137
2840 (2.7% → 4.8%)

PutnamBench 1288
4800 (26.8%) 613

3512 (17.4%) 5
613 →

11
613 (0.8% → 1.8%)

proofs (Step 2). A majority of the repaired proofs (green dots) are above the y = x line, meaning
they are longer than the original proofs, let alone the simplified proofs (blue dots).

1090 1100 1110 1120
Proof Length

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

33.0 34.5 36.0
Reduction %

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

102 103

Original Length (log scale)

102

103

W
ro

ng
/R

ep
ai

re
d

Le
ng

th
 (l

og
 sc

al
e)

Simplified (Wrong)
Simplified (Correct)
Repaired (Correct)
y=x

Figure 3: Analysis of execution-based repair with Goedel-Prover-V2 on PutnamBench.

In Table 2, we analyze the success rate of each step of our pipeline. However, the key issue remains
to be the high length of the repaired proofs. Even after linting, only 4.8% (miniF2F) / 1.8% (Putnam)
of post-linted proofs are shorter than the best proof found by ProofOptimizer during simplification.
We refer the reader to Appendix E for further analysis and examples.

4.3 Iterative Proof Shortening

In Fig. 4 (left), we show the results of iterative proof shortening on miniF2F and PutnamBench
proofs using ProofOptimizer-ExpIt. First, we do 64 samples per iteration for 6 iterations, observing
steady improvement at each iteration. To demonstrate the potential of further scaling, we do 1024
samples at iterations 7 and 8 and see significant improvement (see Appendix C.2 for analysis
on sample size). Overall, ProofOptimizer combined with iterative proof shortening is very
effective on miniF2F and PutnamBench, as average proof length is reduced from 334→ 75 and
1468 → 811, for an average per-proof reduction of 87.9%/57.2%. In Fig. 4 (right), we plot the
overall shortening against the length of the original proof, observing that longer proofs remain
challenging to simplify.

10

0 1 2 3 4 5 6 7* 8*
60

120

180

240

300
Pr

oo
f L

en
gt

h
(

)

Min@64 (miniF2F)

0 1 2 3 4 5 6 7* 8*

900

1050

1200

1350

Min@64 (Putnam)

0 1 2 3 4 5 6 7* 8*
Iteration

20

40

60

80

%
 R

ed
uc

tio
n

(
)

Red@64 (miniF2F)

0 1 2 3 4 5 6 7* 8*
Iteration

15

30

45

60
Red@64 (Putnam)

10 50 100 500 1000 5000
Original Proof Length (log scale)

20

40

60

80

100

%
 R

ed
uc

tio
n

(
)

Reduction vs. Proof Length

Dataset
Putnam
MiniF2F

Figure 4: Iterative Shortening: per-iteration improvement (left) and effect of proof length (right)

Finally, in Table 3, we demonstrate the effectiveness of ProofOptimizer on an out-of-distribution
dataset, Seed-Prover’s four IMO 2025 proofs. With an order of magnitude higher sampling budget,
we achieve a significant reduction in the proof length for all four problems, showcasing the potential
of our model and technique. Details about our full setup are in Appendix C.3.

Table 3: Iterative shortening achieves significant reduction for Seed-Prover’s IMO 2025 proofs.

P1 P3 P4 P5

Original Proof Length 36478 16377 29147 8658
Simplified Proof Length 20506 7907 14531 4002

Length Reduction 43.8% 51.7% 50.1% 53.8%

5 Additional Benefits of Proof Simplification

5.1 Training on Simplified Proofs Improves Generation

Next, we investigate whether fine-tuning on simplified proofs can be advantageous compared to
fine-tuning on longer, raw proofs. To do so, we prepare two datasets of identical problems, the first
containing a set of proofs generated by Goedel-Prover-V2 and the second containing the same
proofs simplified by ProofOptimizer-ExpIt. The average proof length of the original and simplified
proofs is 147 and 85, respectively. We do continued supervised fine-tuning (SFT) starting from our
base model (Sec. A.1) with a standard negative log-likelihood (NLL) loss.

In Fig. 5 (left), we compare the training loss between the two datasets. As expected, the initial
loss when using original proofs is higher, as models have not seen such long proofs during initial
fine-tuning. However, the losses quickly converge. We observe that training on original proofs
causes occasional loss spikes, which we suspect are due to several data batches that are hard to

11

https://github.com/ByteDance-Seed/Seed-Prover/tree/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/IMO2025

learn (e.g. extremely long proofs). Decreasing the learning rate mitigated these training loss spikes
but did not improve validation accuracy. In Fig. 5 (right), we compare the miniF2F scores of the two
models during SFT, showing that training on simplified proofs results in slightly higher evaluation
accuracy despite the two settings having identical training losses.

0 400 800 1200 1600 2000
Step

0.05

0.10

0.15
Training Loss

Original
Simplified

0 400 800 1200 1600 2000
Step

59

60

61

62

63

miniF2F Pass@32 (T=0.8)
Original
Simplified

Figure 5: Training loss (left) and miniF2F score (right) after SFT on simplified vs. original proofs.

5.2 Simplified Proofs Have a Shorter Execution Time

We also observe that proofs simplified by ProofOptimizer often exhibit a faster execution time.
We measure proof execution time with lake env lean --profile, excluded library import time
(imports are always the same but actual time may vary due to caching effects). We compare the
execution times of each proof before and after iterative shortening in Fig. 6 (scatter). For both
datasets, we visibly observe that a majority of points lie below the y = x line, signifying speedup.
Fig. 6 (histograms) also show the distribution of speedup ratios

timeorig
timenew

. Of the 75 PutnamBench
proofs, 50/75 have a speedup of over 10%, and 22/75 of those have a speedup of over 50%. We
also observe that proofs with a higher original execution time tend to show more speedup. The
same trends hold for miniF2F, where 114/194 and 56/194 proofs have a speedup over 10% and
50%, respectively. Finally, we observe 25% and 81% speedups on Seed-Prover’s proofs for P3 and
P4 of the IMO 2025 (Sec. C.3).

Upon qualitatively analyzing the proofs, we observe that the original proofs often have extraneous
tactics that are eliminated by the simplified proofs. However, we also find several cases where the
simplified proofs are much slower than the original proof, which usually occurs when a faster
proof algorithm is replaced by a shorter but slower method (e.g. brute force with interval cases).
We provide two examples of each in Appendix H.2.

0 3 6 9
Original Time (s)

0

3

6

9

Si
m

pl
ifi

ed
 T

im
e

(s
)

Execution Times (Putnam)

0 0.5 1 1.5 2 2.5 3+
Speedup Ratio

0

5

10

15

20

Fr
eq

ue
nc

y

Speedup Distribution (Putnam)

0 5 10 15
Original Time (s)

0

5

10

15

Si
m

pl
ifi

ed
 T

im
e

(s
)

Execution Times (miniF2F)

0 0.5 1 1.5 2 2.5 3 3.5 4+
Speedup Ratio

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Speedup Distribution (miniF2F)

Figure 6: Simplified proofs are frequently faster than original proofs on miniF2F and PutnamBench.

12

5.2.1 Optimizing for Heartbeats instead of Proof Length

As we stated in Sec. 2, our complexity measure L generalizes beyond proof length. Next, we
set L to be the number of Lean heartbeats1, a proxy of execution time that can run efficiently
in parallel. With this metric, we run eight iterations of the same inference-time algorithm using
ProofOptimizer-ExpIt. In Fig. 7 (a, b), we show analogous plots as earlier for miniF2F. Observe
that this time, all the points are now on or below the y = x line, eliminating the short but slow
proofs we saw in Fig. 6. Overall, we observe faster proofs, with 138/194 and 81/194 miniF2F proofs
showing a speedup over 10% and 50%, respectively (compared to 114/194 and 56/194 before using
the length metric). In Fig. 7 (c), we see that while the lengths of the proofs found with this metric
are slightly longer than before, there is still considerable shortening. Finally, Fig. 7 (d) explains
this by showing that proof length and number of heartbeats are generally correlated. In the future,
optimizing for a combination of proof length and heartbeat count could lead to improvements in
both readability and execution time. Full results can be found in Sec. H.1.

0 5 10 15
Original Time (s)

0

5

10

15

Si
m

pl
ifi

ed
 T

im
e

(s
)

Execution Times (miniF2F)

0 0.5 1 1.5 2 2.5 3 3.5 4+
Speedup Ratio

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Speedup Distribution (miniF2F)

0 1 2 3 4 5 6 7* 8*
Iteration

900

1050

1200

1350

Pr
oo

f L
en

gt
h

(
)

Min@64 (Putnam)
Length Metric
Heartbeats Metric

100 101 102 103

Tokens (log scale)

102

103

104

105

106

He
ar

tb
ea

ts
 (l

og
 sc

al
e)

Heartbeats vs. Proof Length

miniF2F
Putnam

Figure 7: Using heartbeats instead of proof length as complexity measure

6 Related Works

LLMs for Theorem Proving in Lean Formal theorem proving is a rapidly growing frontier in AI
for mathematics and software verification (Yang et al., 2024b; Li et al., 2024). Progress is typically
measured with benchmarks of mathematical theorems in Lean such as miniF2F (Zheng et al., 2021),
PutnamBench (Tsoukalas et al., 2024), and ProofNet (Azerbayev et al., 2023). Recently, there have
been many LLMs developed for Lean such as Seed-Prover (Chen et al., 2025), Goedel-Prover (Lin
et al., 2025a), DeepSeek-Prover (Ren et al., 2025), and Kimina-Prover (Wang et al., 2025). There have
also been post-training techniques built on top of these models, such as with expert iteration (Lin
et al., 2024), proof sketching (Cao et al., 2025), tree search (Lample et al., 2022; Zimmer et al., 2025),
self-play (Dong and Ma, 2025), proof repair (Ospanov et al., 2025), and RL (Gloeckle et al., 2024).

AI for Program Simplification A related line of work makes programs shorter or more efficient
(Schkufza et al., 2013; Mankowitz et al., 2023; Shypula et al., 2023; Gautam et al., 2024). In
parallel, library learning aims to discover reusable abstractions, often eliminated repeated code
and shortening programs (Ellis et al., 2023; Grand et al., 2023; Kaliszyk and Urban, 2015; Wang
et al., 2023; Zhou et al., 2024; Berlot-Attwell et al., 2024). Finally, symbolic reasoning techniques like
program slicing (Weiser, 2009), super-optimization (Sasnauskas et al., 2017), or partial evaluation
(Jones, 1996) can also shorten and optimize low-level code.

1We use #count heartbeats with set option Elab.async false

13

Automated Proof Shortening Frieder et al. (2024) study factors that make Lean proofs easier
to understand, motivating shorter proofs for maintainability. Classically, there have also been
many symbolic methods targeting shortening proofs in SAT and first-order logic languages (Rahul
and Necula, 2001; Vyskočil et al., 2010; Wernhard and Bibel, 2024; Gladshtein et al., 2024; Kinyon,
2018). On the neural side, GPT-f (Polu and Sutskever, 2020) generated 23 verified proofs shorter
than those in the Metamath library. Most related to our work, ImProver (Ahuja et al., 2024),
is an inference-time method for proof shortening using GPT-4o with proof states and retrieval.
In contrast, we use training-time approaches (expert iteration and RL), analyze complementary
inference-time techniques, and focus on shortening longer proofs generated by SoTA LLMs.

7 Conclusion

We present ProofOptimizer, the first language model trained to simplify Lean proofs. Unlike prior
work that wraps existing LLMs around agentic scaffolding, we train a model using expert iteration
and RL, coupled with a symbolic linter and iterative proof shortening at inference time. While
simple, our approach already yields nontrivial results, reducing proof length by an average of 87%
on MiniF2F, 57% on PutnamBench, and 49% on Seed-Prover’s IMO 2025 proofs. As AI becomes
more tightly integrated with mathematics, we envision a future where AI-generated proofs are not
only correct but also concise and readable, with simplification serving as a critical bridge between
rigorous formal proofs and human intuitive understanding.

8 Acknowledgments

We thank Heather Macbeth for suggesting the experiments in Sec. 5.2.1 and writing the code to
count heartbeats, Albert Jiang and Melanie Matchett Wood for discussions regarding desiderata
in proof simplification, Amaury Hayat for providing guidance throughout the project, and many
members at FAIR for various technical contributions, suggestions, and insightful discussions.

14

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023. (Cited on pg. 30)

Riyaz Ahuja, Jeremy Avigad, Prasad Tetali, and Sean Welleck. Improver: Agent-based automated
proof optimization. arXiv preprint arXiv:2410.04753, 2024. (Cited on pg. 4, 6, 8, 14)

Leni Aniva, Chuyue Sun, Brando Miranda, Clark Barrett, and Sanmi Koyejo. Pantograph: A
machine-to-machine interaction interface for advanced theorem proving, high level reasoning,
and data extraction in lean 4. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 104–123. Springer, 2025. (Cited on pg. 20)

Hugh Leather Aram H. Markosyan, Gabriel Synnaeve. Leanuniverse: A library for consistent and
scalable lean4 dataset management. https://github.com/facebookresearch/LeanUniverse,
2024. (Cited on pg. 20)

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev,
and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level
mathematics. arXiv preprint arXiv:2302.12433, 2023. (Cited on pg. 13, 20)

Ian Berlot-Attwell, Frank Rudzicz, and Xujie Si. Library learning doesn’t: The curious case of the
single-use” library”. arXiv preprint arXiv:2410.20274, 2024. (Cited on pg. 13)

Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang. Reviving
dsp for advanced theorem proving in the era of reasoning models. arXiv preprint arXiv:2506.11487,
2025. (Cited on pg. 13)

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated
theorem proving, 2025. URL https://arxiv. org/abs/2507.23726, 2025. (Cited on pg. 4, 13, 28)

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374. (Cited
on pg. 6, 47)

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025. (Cited on pg. 30)

15

https://github.com/facebookresearch/LeanUniverse
https://arxiv.org/abs/2107.03374

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer Science,
pages 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6\ 26. URL https://doi.org/10.

1007/978-3-319-21401-6_26. (Cited on pg. 4)

Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving. arXiv preprint arXiv:2502.00212, 2025. (Cited on pg. 13, 20)

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke
Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable,
interpretable knowledge with wake–sleep bayesian program learning. Philosophical Transactions of
the Royal Society A, 381(2251):20220050, 2023. (Cited on pg. 13)

Simon Frieder, Jonas Bayer, Katherine M Collins, Julius Berner, Jacob Loader, András Juhász, Fabian
Ruehle, Sean Welleck, Gabriel Poesia, Ryan-Rhys Griffiths, et al. Data for mathematical copilots:
Better ways of presenting proofs for machine learning. arXiv preprint arXiv:2412.15184, 2024.
(Cited on pg. 14)

Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghaddam.
Refactorbench: Evaluating stateful reasoning in language agents through code. In NeurIPS 2024
Workshop on Open-World Agents, 2024. (Cited on pg. 13)

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning.
arXiv preprint arXiv:2410.02089, 2024. (Cited on pg. 8)

Vladimir Gladshtein, George Pı̂rlea, and Ilya Sergey. Small scale reflection for the working lean
user. arXiv preprint arXiv:2403.12733, 2024. (Cited on pg. 14)

Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve, and Amaury Hayat. Abel: Sample efficient
online reinforcement learning for neural theorem proving. In The 4th Workshop on Mathematical
Reasoning and AI at NeurIPS’24, 2024. (Cited on pg. 13)

Gabriel Grand, Lionel Wong, Maddy Bowers, Theo X Olausson, Muxin Liu, Joshua B Tenenbaum,
and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and documenting code.
arXiv preprint arXiv:2310.19791, 2023. (Cited on pg. 13)

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022. (Cited on pg. 20)

Neil D Jones. An introduction to partial evaluation. ACM Computing Surveys (CSUR), 28(3):480–503,
1996. (Cited on pg. 13)

Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of lemmas.
Journal of symbolic computation, 69:109–128, 2015. (Cited on pg. 13)

Michael Kinyon. Proof simplification and automated theorem proving. CoRR, abs/1808.04251, 2018.
URL http://arxiv.org/abs/1808.04251. (Cited on pg. 4, 14)

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. Advances in neural information processing systems, 35:26337–26349, 2022. (Cited on pg. 13)

16

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
http://arxiv.org/abs/1808.04251

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong,
Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath.
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/

aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024. (Cited on pg. 20, 22)

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving. arXiv preprint arXiv:2404.09939, 2024. (Cited
on pg. 13)

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave
thinking and proving. arXiv preprint arXiv:2407.10040, 2024. (Cited on pg. 13)

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025a. (Cited on pg. 8, 13, 20, 21)

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with
scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025b. (Cited on
pg. 4)

Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, Beibei Xiong, et al. Combibench: Benchmarking llm capability for
combinatorial mathematics. arXiv preprint arXiv:2505.03171, 2025a. (Cited on pg. 20)

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025b. URL https:

//arxiv.org/abs/2503.20783. (Cited on pg. 7)

Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms
discovered using deep reinforcement learning. Nature, 618(7964):257–263, 2023. (Cited on pg. 13)

The mathlib Community. The lean mathematical library. CoRR, abs/1910.09336, 2019. URL
http://arxiv.org/abs/1910.09336. (Cited on pg. 4)

Azim Ospanov, Farzan Farnia, and Roozbeh Yousefzadeh. Apollo: Automated llm and lean
collaboration for advanced formal reasoning. arXiv preprint arXiv:2505.05758, 2025. (Cited on
pg. 13)

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020. (Cited on pg. 14)

Shree Prakash Rahul and George C Necula. Proof optimization using lemma extraction. Computer
Science Division, University of California, 2001. (Cited on pg. 14)

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical
reasoning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025. (Cited on pg. 13)

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja,
and John Regehr. Souper: A synthesizing superoptimizer. arXiv preprint arXiv:1711.04422, 2017.
(Cited on pg. 13)

17

[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
http://arxiv.org/abs/1910.09336

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. ACM SIGARCH
Computer Architecture News, 41(1):305–316, 2013. (Cited on pg. 13)

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.
(Cited on pg. 7)

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi,
Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits. arXiv preprint arXiv:2302.07867, 2023. (Cited on pg. 13)

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.

github.io/blog/qwen2.5/. (Cited on pg. 30)

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating neural theorem-provers on
the putnam mathematical competition. Advances in Neural Information Processing Systems, 37:
11545–11569, 2024. (Cited on pg. 8, 13, 20)

Jiřı́ Vyskočil, David Stanovskỳ, and Josef Urban. Automated proof compression by invention of new
definitions. In International Conference on Logic for Programming Artificial Intelligence and Reasoning,
pages 447–462. Springer, 2010. (Cited on pg. 14)

Christian Walder and Deep Karkhanis. Pass@ k policy optimization: Solving harder reinforcement
learning problems. arXiv preprint arXiv:2505.15201, 2025. (Cited on pg. 8)

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing
libraries. arXiv preprint arXiv:2310.00656, 2023. (Cited on pg. 13)

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal
reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025. (Cited on
pg. 13)

Mark Weiser. Program slicing. IEEE Transactions on software engineering, (4):352–357, 2009. (Cited on
pg. 13)

Christoph Wernhard and Wolfgang Bibel. Investigations into proof structures. Journal of Automated
Reasoning, 68(4):24, 2024. (Cited on pg. 14)

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou,
Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li,
Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie
Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao,
Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan.
Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024a. (Cited on pg. 20)

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075,
2024b. (Cited on pg. 13)

18

https://arxiv.org/abs/2402.03300
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. Advances in
Neural Information Processing Systems, 37:105848–105863, 2024. (Cited on pg. 20)

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal mathe-
matical reasoning of large language models. arXiv preprint arXiv:2505.02735, 2025. (Cited on
pg. 20)

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model?, 2025. URL https://arxiv.org/abs/2504.13837. (Cited on pg. 8)

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022. (Cited on
pg. 7)

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021. (Cited on pg. 4, 8, 13,
20)

Jin Peng Zhou, Yuhuai Wu, Qiyang Li, and Roger Grosse. Refactor: Learning to extract theorems
from proofs. arXiv preprint arXiv:2402.17032, 2024. (Cited on pg. 13)

Matthieu Zimmer, Xiaotong Ji, Rasul Tutunov, Anthony Bordg, Jun Wang, and Haitham Bou
Ammar. Bourbaki: Self-generated and goal-conditioned mdps for theorem proving. arXiv preprint
arXiv:2507.02726, 2025. (Cited on pg. 13)

19

https://arxiv.org/abs/2504.13837

A Lean Base Model and Proof Simplification Data Details

A.1 General Base Model for Lean

In this section, we describe the data recipe for training our general-purpose base model in Lean. We
fine-tune Qwen-2.5-7B-Instruct (Yang et al., 2024a) on around 1B Lean tokens on a combination
of diverse math and Lean-related tasks, as follows:

• Natural Language Problem Solving: The model is trained on natural language mathemat-
ics problems with associated solutions so that it has general math capabilities. We use
NuminaMath-1.5 (LI et al., 2024), a high-quality set of such pairs.

• Lean Code Completion: We use a subset of Lean code from GitHub, using GPT-4o with
heuristics to classify whether code is Lean 3 or Lean 4. We include only the Lean 4 subset of
the code.

• Auto-formalization: In order to teach the model to associate natural language with Lean,
we train the model to perform auto-formalization of both problems and solutions from
natural language to Lean 4 in our data mix. For problems, we use natural language problems
with Lean problem statement formalizations from high-quality datasets: CombiBench (Liu
et al., 2025a), Compfiles, FormalMATH (Yu et al., 2025), Goedel-Pset (Lin et al., 2025a),
Lean Workbook (Ying et al., 2024), miniF2F (Zheng et al., 2021), ProofNet (Azerbayev et al.,
2023), and PutnamBench (Tsoukalas et al., 2024). We include solution autoformalization data
from the Goedel-Pset-v1-Solved dataset by mapping Lean solutions with natural language
solutions.

• Formal Theorem Proving: We use a set of conjectures and proofs from STP (Dong and Ma,
2025), which is a diverse collection of theorems and proofs in Lean 4 generated via expert
iteration while training their model.

• Tactic and Proof State Prediction: Finally, to teach the model about proof states, we use
pre-extracted data from LeanUniverse (Aram H. Markosyan, 2024) and extract additional
data using the Pantograph (Aniva et al., 2025) tool. For each proof in STP, we extract each
tactic, as well as the proof states before and after the tactic. The model is given the proof state
before the tactic and asked to predict both the tactic and the proof state following the tactic.

A.2 Generating a Dataset of Theorems and Proofs for Shortening

Next, we describe how we generate our training dataset of proofs to be shortened.

Formalizing Proofs with Sketches to Derive Subtheorems While there are many datasets such
as Goedel-Pset and Lean Workbook, we find that they have a high density of simple computational
problems posed as proofs rather than high-quality proving problems. In Goedel-Pset, we estimate
that only 5% of the problems are proof problems2, leading to a lack of high-quality theorem proving
data. To combat this, we develop a technique to generate diverse and interesting theorems based
on the idea of proof sketching (Jiang et al., 2022).

2We estimate whether a problem is a computational problem via a heuristic filter of whether the problem has any of the
keywords: prove, show, establish, demonstrate, verify

20

The key idea is that we can leverage existing natural language solutions to identify core steps in a
proof. We first train our Lean base model to take a natural language solution and auto-formalizing
into a high-level proof, which we call a proof sketch, an example shown in Listing 1. In the proof
sketch, core steps are represented via have statements, and lower-level details are omitted and
left as sorry statements. We then filter sketches are then filtered by the Lean compiler to remove
non-compiling sketches.

Once we have a set of compiling sketches, we extract each sorry goal into a new theorem via the
extract goal tactic, which turns it into a theorem that is equivalent to what needs to be proved at
that particular sorry. For example, extracting the second sorry in Listing 1 results in the theorem
shown in Listing 2. By extracting these sorry statements, we are able to generate 518K theorems.

theorem lean_workbook_plus_22532 (a b : N → R)

(h0 : 0 < a ∧ 0 < b)

(h1 : ∀ n, a (n + 1) = a n + 2)

(h2 : ∀ n, b (n + 1) = b n * 2)

(h3 : a 1 = 1)

(h4 : b 1 = 1)

(h5 : Σ k in Finset.range 3, b k = 7) :

Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2^n + 3 := by

-- Lemma 1: Prove that the sequence {a_n} is an arithmetic sequence.

have lemma1 : ∀ n, a (n + 1) = a n + 2 := by

sorry

-- Lemma 2: Express a_n in terms of n.

have lemma2 : ∀ n, a n = 2 * n - 1 := by

sorry

-- Lemma 3: Express b_n in terms of n.

have lemma3 : ∀ n, b n = 2^(n - 1) := by

sorry

-- Lemma 4: Calculate the sum of the first n terms of the sequence {a_n b_n}.

have lemma4 : ∀ n, Σ k in Finset.range n, (a k * b k) = (2 * n - 3) * 2^n + 3 := by

sorry

-- Apply lemma4 to conclude the theorem.

exact lemma4 n

Listing 1: Example of a proof sketch

theorem lean_workbook_plus_22532.extracted_1_1 (a b : N → R) (h0 : 0 < a ∧ 0 < b) (h1 : ∀
↪→ (n : N), a (n + 1) = a n + 2)

(h2 : ∀ (n : N), b (n + 1) = b n * 2) (h3 : a 1 = 1) (h4 : b 1 = 1) (h5 : Σ k ∈
↪→ Finset.range 3, b k = 7)

(lemma1 : ∀ (n : N), a (n + 1) = a n + 2) (n : N) : a n = 2 * ↑n - 1 := sorry

Listing 2: Example of an extracted theorem

Fine-Tuning our Model for Proof Sketching In order to fine-tune our model for proof sketching,
we first curate a dataset of natural language problems (with corresponding Lean problem formal-
izations) and solutions by combining Goedel-Pset-v1 (Lin et al., 2025a) with NuminaMath-1.5

21

(LI et al., 2024). Then, we use Qwen-2.5-32B-Instruct to produce proof-sketches based on these
natural language solutions similar to that in Listing 1. We filter out compiling sketches and train
our Lean base model on them. In Table 4, we show the results of fine-tuning. Since it can be tricky
to measure the objective correctness of a sketch, we use the proxy of compile rate, finding our
model performs better than Qwen2.5-32B and is smaller and can do inference faster.

Table 4: Proof sketching ability of models

Model compile@1 compile@16

Qwen2.5 7B (zero-shot) 3.6 7.0
Qwen2.5 7B (one-shot) 4.9 19.0

Qwen2.5 32B (zero-shot) 21.1 62.0
Qwen2.5 32B (one-shot) 35.1 75.0

Ours (7B) 54.8 89.1

Generating Proofs for Simplification Because proof sketching can generate steps or sub-theorems
that are too incremental, we first filter out trivial theorems that can be easily solved by automation
tactics in Lean. For example, the first sorry in Listing 1 is just a restatement of hypothesis h1 and
can be solved via rfl. While this theorem is correct, it is not challenging for the model. Therefore,
we design an AUTO tactic (Listing 3) that tries a series of Lean automation tactics such as linarith
and aesop to filter out these simple theorems, leaving 307K of the original 518K theorems (filtering
out 41%).

For the remaining theorems, we attempt to generate proofs of these theorems with
Goedel-Prover-V2-32B, a strong open-source proving model. With 4 attempts per theorem, the
model is able to prove 145K theorems, which we use as targets for proof simplification. Statistics
and examples of these proofs can be found in the next section, Appendix A.3.

macro "AUTO" : tactic =>

‘(tactic|

repeat’

(try rfl

try tauto

try assumption

try norm_num

try ring

try ring_nf at *

try ring_nf! at *

try native_decide

try omega

try simp [*] at *

try field_simp at *

try positivity

try linarith

try nlinarith

try exact?

try aesop))

Listing 3: AUTO tactic for filtering trivial theorems

22

A.3 Statistics of Proof Simplification Training Dataset

The minimum, Q1, median, Q3, and maximum proof lengths of our training dataset are 1, 103,
204, 411, and 10958. The mean is 334. In Fig. 8, we show the distribution of lengths, observing its
right-skewed nature. Examples of proofs are shown in Listings 4 and 5. Compared to the proofs in
our evaluation sets, we observe that training proofs often have more unused hypotheses, as they
are derived from extracting the proof state, which may contain hypotheses that are not used for
that particular sub-goal.

0 250 500 750 1000 1250 1500 1750 2000
Proof Length

0

5K

10K

15K

20K

25K
Fr

eq
ue

nc
y

Histogram of Proof Lengths

Figure 8: Histogram of proof lengths.

23

theorem extracted_1 (a b : R) (ha : 0 ≤ a) (ha1 : a ≤ 1) (hb : b = a ^ 3 + 1 / (1 + a))

(lemma1 : 1 - a + a ^ 2 - a ^ 3 ≤ 1 / (1 + a)) (lemma2 : b ≥ 1 - a + a ^ 2) (lemma3 : 1 - a

↪→ + a ^ 2 ≥ 3 / 4)

(lemma4 : b ≤ 3 / 2) : 3 / 4 < b := by

have h_main : 3 / 4 < b := by

by_contra h

-- Assume for contradiction that b ≤ 3/4

have h1 : b ≤ 3 / 4 := by linarith

-- From lemma2, b ≥ 1 - a + a2, and from lemma3, 1 - a + a2 ≥ 3/4

have h2 : 1 - a + a ^ 2 ≤ 3 / 4 := by

linarith

-- But from lemma3, 1 - a + a2 ≥ 3/4, so 1 - a + a2 = 3/4

have h3 : 1 - a + a ^ 2 = 3 / 4 := by

linarith

-- Solve 1 - a + a2 = 3/4 to get a = 1/2

have h4 : a = 1 / 2 := by

have h41 : a ^ 2 - a + 1 / 4 = 0 := by

nlinarith

have h42 : (a - 1 / 2) ^ 2 = 0 := by

nlinarith

have h43 : a - 1 / 2 = 0 := by

nlinarith

linarith

-- Substitute a = 1/2 into b = a3 + 1/(1 + a)

have h5 : b = 19 / 24 := by

rw [hb]

rw [h4]

norm_num

-- But 19/24 > 3/4, so b > 3/4, contradiction

have h6 : b > 3 / 4 := by

rw [h5]

norm_num

linarith

exact h_main

Listing 4: Example of Proof Simplification Training Task (Length 158)

24

theorem extracted_1 (n : N) (hn : 3 ≤ n) (lemma1 : Nat.card ↑{k | k ≤ n ∧ k ̸= 0} = n) :

Nat.card ↑{k | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by

have h_main : Nat.card ↑{k : N | k ≤ n - 1 ∧ k ̸= 0} = n - 1 := by

have h1 : {k : N | k ≤ n - 1 ∧ k ̸= 0} = Set.Icc 1 (n - 1) := by

apply Set.ext

intro k

simp only [Set.mem_setOf_eq, Set.mem_Icc]

constructor

· intro h

have h2 : k ≤ n - 1 := h.1

have h3 : k ̸= 0 := h.2

have h4 : 1 ≤ k := by

by_contra h4
-- If k < 1, then k = 0 since k is a natural number

have h5 : k = 0 := by

omega

contradiction

exact ⟨h4, h2⟩
· intro h

have h2 : 1 ≤ k := h.1

have h3 : k ≤ n - 1 := h.2

have h4 : k ≤ n - 1 := h3
have h5 : k ̸= 0 := by

by_contra h5
-- If k = 0, then 1 ≤ k would be false

have h6 : k = 0 := by simpa using h5
omega

exact ⟨h4, h5⟩
rw [h1]

-- Calculate the cardinality of the set {1, . . ., n - 1}

have h2 : Nat.card (Set.Icc 1 (n - 1) : Set N) = n - 1 := by

-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1

have h3 : n - 1 ≥ 1 := by

have h4 : n ≥ 3 := hn

omega

-- Use the formula for the cardinality of the interval [a, b]

rw [Nat.card_eq_fintype_card]

-- Use the fact that the cardinality of the interval [1, n - 1] is n - 1

rw [Fintype.card_ofFinset]

-- Convert the set to a finset and calculate its cardinality

<;> simp [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]

<;> cases n with

| zero => contradiction

| succ n =>

cases n with

| zero => contradiction

| succ n =>

cases n with

| zero => contradiction

| succ n =>

simp_all [Finset.Icc_eq_empty, Finset.card_range, Nat.succ_le_iff]

<;> ring_nf at *

<;> omega

rw [h2]

exact h_main

Listing 5: Example of Proof Simplification Training Task (Length 295)

25

B Training Metrics throughout RL

In Section 4.1, we observed that expert iteration leads to higher diversity as witnessed by better @32
metrics, while reinforcement learning with standard reinforcement learning algorithms maximizing
expected rewards leads to higher @1 metrics. In Figure 9, we show the evolution of proof shortening
red@1 alongside red@32. Initial @32 metrics are slowly distilled into @1, but the improvement on
@32 metrics is limited.

0 50 100 150
Step (k)

50

55

60

65

R
el

at
iv

e
sh

or
te

ni
ng

 (%
)

(a) miniF2F red@1

0 50 100 150
Step (k)

10

12

14

16

R
el

at
iv

e
sh

or
te

ni
ng

 (%
)

(b) PutnamBench red@1

0 25 50 75 100
Step (k)

66

68

70

72

R
el

at
iv

e
sh

or
te

ni
ng

 (%
)

(c) miniF2F red@32

0 25 50 75 100
Step (k)

18

20

22

R
el

at
iv

e
sh

or
te

ni
ng

 (%
)

(d) PutnamBench red@32

Figure 9: Reduction metrics @1 and @32 over the course of RL. GRPO maximizes red@1 at the
cost of diversity, as red@32 only marginally increases in comparison.

26

C Full Results and Extended Analysis of Iterative Proof Shorten-
ing

C.1 Table of Iterative Proof Shortening Results

Table 5 is a tabular form of Fig. 4, showing the proof length after each iteration of proof shortening.

Table 5: Min@64 (rounded to nearest integer) and reduction (%) of miniF2F and PutnamBench
proofs across inference-time iterations. Iterations 1− 6 are done with 64 samples, and 7− 8 with
1024 samples.

Dataset Model Orig Lint It 1 It 2 It 3 It 4 It 5 It 6 It 7* It 8*

miniF2F
Min@64 334 302 144 126 121 117 106 104 88 75

Red@64 (%) 0.0 9.2 76.6 80.0 81.0 81.5 82.9 83.1 85.7 87.9

Putnam
Min@64 1468 1359 1123 1061 1024 1007 975 969 890 811

Red@64 (%) 0.0 7.4 34.8 40.0 42.5 43.6 46.4 47.1 52.2 57.2

C.2 Effect of k on min@k and red@k throughout simplification

In this section, we analyze the effect of increasing k on min@k and red@k. First, we analyze this
trend when attempting to simplify the initial, linted proof, shown in Table 6 and Fig. 10. We
observe a relatively log-linear gain in both metrics.

For comparison, we analyze the same trend but for simplifying proofs that have already gone
many iterations of simplification. In Fig. 11, we analyze proofs that have gone 7 iterations of
proof simplification. We see a different pattern, where min@k falls slower for lower k and then
log-linearly afterwards. Intuitively, as proofs become more simplified, they become harder to
simplify in a low-shot setting, and exploring more diverse simplifications becomes crucial.

Table 6: Min@k and Red@k for increasing values of k

Dataset Metric Original Linter @1 @2 @4 @8 @16

miniF2F
Min@k 334 302 142 141 139 137 134

Red@k (%) 0.0% 9.2% 77.1% 77.3% 77.7% 78.1% 78.6%

PutnamBench
Min@k 1468 1359 1120 1117 1112 1105 1094

Red@k (%) 0.0% 7.4% 35.2% 35.5% 35.9% 36.5% 37.3%

Dataset Metric @32 @64 @128 @256 @512 @1024

miniF2F
Min@k 130 126 122 118 114 110

Red@k (%) 79.2% 79.9% 80.6% 81.2% 81.8% 82.4%

PutnamBench
Min@k 1080 1063 1043 1023 1004 987

Red@k (%) 38.4% 39.7% 41.3% 42.9% 44.3% 45.7%

27

1 2 4 8 16 64 256 1024
k

112

120

128

136
M

in
@

k

Min@k (miniF2F)

1 2 4 8 16 64 256 1024
k

78.0

79.5

81.0

82.5

Re
du

ct
io

n
(%

)

Red@k (miniF2F)

1 2 4 8 16 64 256 1024
k

990

1020

1050

1080

1110

M
in

@
k

Min@k (PutnamBench)

1 2 4 8 16 64 256 1024
k

35.0

37.5

40.0

42.5

45.0

Re
du

ct
io

n
(%

)

Red@k (PutnamBench)

Figure 10: Effect of scaling k (sample count) on Min@k and Red@k (initial iteration)

1 2 4 8 16 64 256 1024
k

75

78

81

84

87

M
in

@
k

Min@k (miniF2F)

1 2 4 8 16 64 256 1024
k

86.0

86.5

87.0

87.5

Re
du

ct
io

n
(%

)

Red@k (miniF2F)

1 2 4 8 16 64 256 1024
k

820

840

860

880

M
in

@
k

Min@k (PutnamBench)

1 2 4 8 16 64 256 1024
k

52.5

54.0

55.5

57.0

Re
du

ct
io

n
(%

)

Red@k (PutnamBench)

Figure 11: Effect of scaling k (sample count) on Min@k and Red@k (later iteration)

C.3 Details on Seed-Prover IMO Proof Shortening

Earlier in 2025, Seed-Prover released Lean proofs of four problems that the model successfully
solved from the 2025 International Mathematical Olympiad (IMO) (Chen et al., 2025). They
solved problems 3, 4, and 5 were solved during the contest window, and problem 1 later after the
competition. However, the proofs of these problems are extremely verbose, especially compared
to their informal counterparts. Using iterative proof shortening, our ProofOptimizer is able to
successfully reduce the proof length of their proofs for P3, P4, and P5 by over half, as well as the
longer P1 by 43.8%. In addition, we find that our shortened proofs for P4 and P5 show a 25% and
81% (respectively) speedup over the original proofs (Table 7).

Table 7: Results for ProofOptimizer + Iterative Shortening on IMO 2025 Proof Simplification

Problem
Length Runtime

Original Simplified Reduction Original Simplified Speedup

P1 36478 20506 43.79% 399.7 392.3 1.02×
P3 16377 7907 51.72% 39.7 39.1 1.02×
P4 29147 14531 50.15% 453.8 362.5 1.25×
P5 8658 4002 53.78% 61.0 33.7 1.81×

We use proofs from the official GitHub repository using Mathlib 4.14.0 (our model was trained
on Mathlib 4.19.0). Before shortening, we replace invocations of exact? and apply? with the
actual proof that is found. Each of the proofs is divided into a collection of smaller lemmas
and theorems (problems 1, 3, 4, and 5 have 80, 52, 88, and 14 theorems, respectively). Since

28

https://github.com/ByteDance-Seed/Seed-Prover/tree/17f89e327e4f90f46b0af385efc233dbbe71f8bb/SeedProver/imo2025/IMO2025

running iterative shortening on the entire proof will suffer from long context issues, we treat
each sub-lemma/sub-theorem as an individual target for shortening. At the end, we combine
the shortened theorems to produce the complete shortened proof. When feeding a sub-theorem
into ProofOptimizer, we include as context the theorem definition (but not proof) of all other
theorems that occur in its proof. Finally, to ensure the correctness of our simplified proofs, we use
SafeVerify to confirm that all four simplified proofs match the specification of the original proof
without any environmental manipulation. We remark that our setup does not consider the space
of structure-level simplifications, as we retain all sub-theorem statements from the original proof
and only simplify their proofs. In addition, as our proof length metric only measures the length of
proofs, it does not take into account unnecessarily long or redundant sub-theorem statements.

As this experiment aims to provide a simple demonstration of the potential of our approach rather
than perform a controlled scientific study, we do not fix the number of iterations or samples per
iteration across problems. Approximately, we use 15-20 iterations of shortening with 64-4096
samples per iteration. Taking inspiration from the analysis in Sec. C.2, we generally use less
samples for the first few iterations and increase the number of samples for later iterations to
maximize reduction per sample. We also allocate more samples to sub-theorems that show more
simplification potential in early iterations. In total, we used approximately 3000 H100 GPU hours
per problem.

29

https://github.com/GasStationManager/SafeVerify

D Comparison with Qwen2.5, GPT-4o, and Gemini-2.5-Pro

In Table 8, we compare ProofOptimizer models with several off the shelf models, namely Qwen
2.5 (Team, 2024), GPT-4o (Achiam et al., 2023), and Gemini-2.5-Pro (Comanici et al., 2025). For
all models, we feed the output of the symbolic linter as input, and report overall reduction with
respect to the original (unlinted) proof.

Table 8: Proof length of miniF2F and PutnamBench proofs for various models. Specially trained
proof minimization models outperform prompted off-the-shelf models. Reinforcement learning
achieves best @1 metrics but at the cost of reducing diversity, as witnessed by improved @32 metrics
with expert iteration.

Dataset Model Min@1 Min@32 Red@1 Red@32

miniF2F

Original 334 0.0%
Linter 302 9.2%

Qwen2.5-Instruct 7B 294 267 25.7% 41.8%
Qwen2.5-Instruct 32B 288 252 30.0% 47.3%

GPT-4o 283 258 35.2% 47.9%
GPT-4o + States 266 290 32.9% 46.5%
Gemini-2.5-Pro 280 207 31.6% 62.0%

Gemini-2.5-Pro + States 283 208 31.6% 62.0%

ProofOptimizer-ExpIt 241 153 53.9% 74.9%
ProofOptimizer-RL 190 152 67.1% 73.4%

Putnam
Bench

Original 1468 0.0%
Linter 1359 7.4%

Qwen2.5-Instruct 7B 1358 1339 9.0% 14.8%
Qwen2.5-Instruct 32B 1353 1304 10.9% 20.7%

GPT-4o 1355 1336 10.9% 18.2%
GPT-4o + States 1379 1358 9.3% 15.9%
Gemini-2.5-Pro 1348 1303 12.7% 24.5%

Gemini-2.5-Pro + States 1371 1319 11.5% 24.1%

ProofOptimizer-ExpIt 1328 1161 15.2% 31.9%
ProofOptimizer-RL 1303 1258 21.6% 27.1%

In Fig. 12, we compare the specific optimized proofs between Gemini and ProofOptimizer. For
both data sets it can be seen that the longer the proof, the more challenging it is to shorten it.
This is because although long proofs have more potential for shortening, the models struggle to
maintain correctness of them. Still, ProofOptimizer is able to bring some improvements for the long
proofs (see the top right part of the PutnamBench plot). In miniF2F, there is a significant number
of proofs that can be minimized to just one step, which typically boils down to invoking one proof
automation tactic (like linarith instead of applying a sequence of more explicit proof steps.

30

1

10

100

1000

1 10 100 1000
Original

O
pt

im
iz

ed

Model Gemini−2.5−Pro ProofOptimizer

miniF2F

1

10

100

1000

1 10 100 1000
Original

O
pt

im
iz

ed

Model Gemini−2.5−Pro ProofOptimizer

PutnamBench

1

10

100

1000

1 10 100 1000
Original

O
pt

im
iz

ed

Model Gemini−2.5−Pro ProofOptimizer

PutnamBench

Figure 12: Comparison of optimized proofs between ProofOptimizer (green) and Gemini 2.5 Pro
(yellow)

31

E Full Results and Extended Analysis of Repair with Execution
Feedback

This section contains the full results of the experiments in Sec. 4.2. All simplification attempts are
done on the set of linted proofs. Table 9, Figure 13, and Figure 14 are extended versions of Fig. 3
for both PutnamBench and miniF2F. The settings are as follows:

• ProofOptimizer: ProofOptimizer-ExpIt, with 64 simplification attempts per proof.

• + Repair: The previous setting, with 1 attempted repair by Goedel-Prover-V2-32B.

• + Repair + Linter: The previous setting, with our linter applied to all proofs.

• ProofOptimizer (@128): ProofOptimizer-ExpIt, with 128 simplification attempts per proof

• ProofOptimizer (@64x2): ProofOptimizer-ExpIt with 64 simplification attempts per proof, and
the best simplified proof for each problem is then fed back for an additional 64 attempts.

We remark that these baselines are normalizing for sample count rather than running time.
Sampling a repair from Goedel-Prover-V2-32B takes considerably longer than sampling a simpli-
fication from our model. This is both because it is a larger model (32B vs. 7B) and because their
model relies on CoT, causing their average response length to be significantly longer than ours.

Table 9: Results of execution-based repair strategies

Dataset Model Min@64 Min@64 × 2 Red@64 Red@64 × 2

miniF2F

Linter 302 9.2%

ProofOptimizer 144 - 75.5% -
+ Repair - 136 - 77.3%

+ Repair + Linter - 132 - 77.9%
ProofOptimizer (@128) - 130 - 78.9%
ProofOptimizer (It 2) - 125 - 80.2%

Putnam
Bench

Linter 1359 7.4%

ProofOptimizer 1123 - 32.9% -
+ Repair - 1113 - 35.3%

+ Repair + Linter - 1107.2 - 35.7%
ProofOptimizer (@128) - 1099 - 36.5%

ProofOptimizer (@64x2) - 1095 - 37.0%

32

1090 1100 1110 1120

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

Proof Length (miniF2F)

33.0 34.5 36.0

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

Reduction % (miniF2F)

1090 1100 1110 1120

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

Proof Length (Putnam)

33.0 34.5 36.0

ProofOpt
(@64)

+ Repair

+ Repair
+ Linter

ProofOpt
(@128)

ProofOpt
(@64x2)

Reduction % (Putnam)

Figure 13: Results of Execution-Based Repair with Goedel-Prover

101 102 103

Original Length (log scale)

101

102

103

W
ro

ng
 a

nd
 R

ep
ai

re
d

Le
ng

th
s (

lo
g

sc
al

e)

Goedel Repair (miniF2F)
Simplified (Wrong)
Simplified (Correct)
Repaired (Correct)
y=x

102 103

Original Length (log scale)

102

103

W
ro

ng
 a

nd
 R

ep
ai

re
d

Le
ng

th
s (

lo
g

sc
al

e)

Goedel Repair (Putnam)
Simplified (Wrong)
Simplified (Correct)
Repaired (Correct)
y=x

Figure 14: Comparison of Proof Lengths with Execution-Based Repair

Finally, in Listings 6 and 7, we show an example of a proof that was successfully repaired. Note
that the repaired proof has many components in common with the original proof.

33

theorem mathd_numbertheory_314

(r n : N) (h0 : r = 1342 % 13) (h1 : 0 < n)

(h2 : 1342|n) (h3 : n % 13 < r)

: 6710 ≤ n := by

have h_r : r = 3 := by rw [h0]

have h_main : 6710 ≤ n := by

have h4 : n % 13 < 3 := by

rw [h_r] at h3
exact h3

obtain ⟨k, rfl⟩ := h2
have h5 : 0 < k := by

by_contra h

push_neg at h

have h6 : k = 0 := by omega

simp [h6] at h1
by_contra! h6
have h7 : k ≤ 4 := by

by_contra h8
have h9 : k ≥ 5 := by omega

have h10 : 1342 * k ≥ 1342 * 5 := by

↪→ nlinarith

omega

interval_cases k <;> norm_num

↪→ [Nat.mul_mod, Nat.add_mod,

↪→ Nat.mod_mod] at h4 ⊢
exact h_main

Listing 6: Original Lean Proof (Length 126)

theorem mathd_numbertheory_314 -- Wrong

(. . . statement omitted) := by

rw [h0] at h3
have : n % 13 < 3 := by omega

obtain ⟨k, rfl⟩ := h2
omega

theorem mathd_numbertheory_314 -- Correct

(. . . statement omitted) := by

have h_r : r = 3 := by

rw [h0]

<;> norm_num

<;> rfl

have h_main : 6710 ≤ n := by

have h4 : n % 13 < 3 := by

rw [h_r] at h3
exact h3

obtain ⟨k, rfl⟩ := h2
by_contra! h

have h5 : k ≤ 4 := by

omega

interval_cases k <;> norm_num

↪→ [Nat.mul_mod, Nat.add_mod,

↪→ Nat.mod_mod] at h4 ⊢ <;>

(try omega) <;> (try contradiction)

exact h_main

Listing 7: Wrong Simplification and Correct
Repair (Length 93)

34

F Evaluation Dataset Details

For our evaluation datasets, we use miniF2F and PutnamBench proofs sampled from
Goedel-LM/Goedel-Prover-V2-32B. For miniF2F, we sample with temperature 1 and top-p 0.95.
For PutnamBench, we use proofs provided by the team. In both cases, we take the shortest passing
proof for each problem in Mathlib 4.19.0, resulting in 194 proofs for miniF2F and 75 proofs for
PutnamBench. Table 10 and Figure 15 show summary statistics of our dataset. One sample from
each dataset is shown in Listings 8 and 9.

As a sidenote, we observe a discrepency in Goedel-Prover-V2-32B’s results with Lean versions. Upon
testing their model, we measured 90% (pass@64) and 86 (pass@184) on miniF2F and PutnamBench
with Mathlib 4.9, but only 80% (pass@64) and 75 (pass@184) with Mathlib 4.19. In this paper, we
use Mathlib 4.19 rather than 4.9, as it is more recent and likely more useful to the Lean community.

Table 10: Summary statistics of proof lengths in evaluation dataset

Dataset n Min Q1 Median Q3 Max Mean

MiniF2F 194 13 64 167 499 2980 334
PutnamBench 75 2 608 1179 2110 5420 1468

0 200 400 600 800 1000 1200 1400
Proof Length

0
10
20
30
40
50

Fr
eq

ue
nc

y

MiniF2F Evaluation Set Lengths (n=194)

0 1000 2000 3000 4000 5000
Proof Length

0

5

10

15

Fr
eq

ue
nc

y

PutnamBench Eval Set Lengths (n=75)

Figure 15: Histograms of proof lengths for our miniF2F and PutnamBench evaluation sets.

theorem mathd_numbertheory_185

(n : N)

(h0 : n % 5 = 3) :

(2 * n) % 5 = 1 := by

have h1 : (2 * n) % 5 = 1 := by

have h2 : (2 * n) % 5 = (2 * (n % 5)) % 5 := by

simp [Nat.mul_mod, Nat.mod_mod]

<;> ring_nf at *

<;> omega

rw [h2]

rw [h0]

<;> norm_num

<;> rfl

exact h1

Listing 8: Example of miniF2F Eval Task (Length 65)

35

theorem putnam_1993_a2

(x : N → R)

(xnonzero : ∀ n : N, x n ̸= 0)

(hx : ∀ n ≥ 1, (x n) ^ 2 - x (n - 1) * x (n + 1) = 1)

: ∃ a : R, ∀ n ≥ 1, x (n + 1) = a * x n - x (n - 1) := by

have h_main : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by

intro n hn

have h1 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x (n + 2) + x n) / x (n +

↪→ 1) := by

intro n hn

have h2 : (x (n + 1)) ^ 2 - x n * x (n + 2) = 1 := by

have h3 := hx (n + 1) (by linarith)

simpa [Nat.add_assoc] using h3
have h3 : (x n) ^ 2 - x (n - 1) * x (n + 1) = 1 := hx n hn

have h4 : x (n + 2) * x n + (x n) ^ 2 - (x (n + 1)) ^ 2 - x (n - 1) * x (n + 1) = 0 := by

linarith

have h5 : (x (n + 2) + x n) * x n - (x (n + 1) + x (n - 1)) * x (n + 1) = 0 := by

ring_nf at h4 ⊢
linarith

have h6 : x n ̸= 0 := xnonzero n

have h7 : x (n + 1) ̸= 0 := xnonzero (n + 1)

have h8 : (x (n + 2) + x n) / x (n + 1) - (x (n + 1) + x (n - 1)) / x n = 0 := by

field_simp [h6, h7] at h5 ⊢
nlinarith

linarith

have h2 : ∀ (n : N), n ≥ 1 → (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by

intro n hn

induction’ hn with n hn IH

· norm_num
· have h3 := h1 n hn

have h4 := h1 (n + 1) (by linarith)

simp [Nat.add_assoc] at h3 h4 ⊢
<;>

(try norm_num at * <;>

try linarith) <;>

(try simp_all [Nat.add_assoc]) <;>

(try ring_nf at * <;>

try linarith) <;>

(try field_simp [xnonzero] at * <;>

try nlinarith)

<;>

linarith

exact h2 n hn

have h_exists_a : ∃ (a : R), ∀ (n : N), n ≥ 1 → x (n + 1) = a * x n - x (n - 1) := by

use (x 2 + x 0) / x 1

intro n hn

have h1 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := h_main n hn

have h2 : x n ̸= 0 := xnonzero n

have h3 : (x (n + 1) + x (n - 1)) / x n = (x 2 + x 0) / x 1 := by rw [h1]

have h4 : x (n + 1) + x (n - 1) = ((x 2 + x 0) / x 1) * x n := by

field_simp [h2] at h3 ⊢
<;> nlinarith

have h5 : x (n + 1) = ((x 2 + x 0) / x 1) * x n - x (n - 1) := by linarith

exact h5

exact h_exists_a

Listing 9: Example of PutnamBench Eval Task (Length 715)

36

G Examples of Proofs Simplified by ProofOptimizer

In Listings 10 to 17, we show proofs successfully optimized with ProofOptimizer and iterative
shortening. Some proofs were syntactically modified to fit on the page (new lines removed, multiple
lines compressed into one).

theorem mathd_algebra_338 -- Original Proof

(a b c : R)

(h0 : 3 * a + b + c = -3)

(h1 : a + 3 * b + c = 9)

(h2 : a + b + 3 * c = 19) :

a * b * c = -56 := by

have h3 : b = a + 6 := by

have h31 : -a + b = 6 := by

have h32 : (a + 3 * b + c) - (3 * a + b

↪→ + c) = 9 - (-3) := by

linarith

linarith

linarith

have h4 : c = a + 11 := by

have h41 : -a + c = 11 := by

have h42 : (a + b + 3 * c) - (3 * a + b

↪→ + c) = 19 - (-3) := by

linarith

linarith

linarith

have h5 : a = -4 := by

have h51 : 3 * a + b + c = -3 := h0
rw [h3, h4] at h51
ring_nf at h51 ⊢
linarith

have h6 : b = 2 := by

rw [h3]

rw [h5]

<;> norm_num

have h7 : c = 7 := by

rw [h4]

rw [h5]

<;> norm_num

have h8 : a * b * c = -56 := by

rw [h5, h6, h7]

<;> norm_num

exact h8

Listing 10: Original Proof (Length 214)

theorem mathd_algebra_338

(a b c : R)

(h0 : 3 * a + b + c = -3)

(h1 : a + 3 * b + c = 9)

(h2 : a + b + 3 * c = 19) :

a * b * c = -56 := by

have : a = -4 := by linarith

subst_vars

nlinarith

Listing 11: Simplified Proof (Length 11)

37

theorem putnam_2015_a2

(a : N → Z)

(abase : a 0 = 1 ∧ a 1 = 2)

(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))

: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor

· decide
constructor

· norm_num [Nat.Prime]

have h1 : ∀ n : N, (a (n + 10) : Z) ≡ - (a n : Z) [ZMOD 181] := by

intro n

induction’ n using Nat.strong_induction_on with n ih

rcases n with (_ | _ | _ | _ | _ | _ | _ | _ | _ | _ | n) <;>

simp_all [Int.ModEq, abase, arec] <;> omega

have h2 : (a 5 : Z) ≡ 0 [ZMOD 181] := by norm_num [Int.ModEq, abase, arec]

have h3 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by

have h4 : ∀ k : N, (a (10 * k + 5) : Z) ≡ 0 [ZMOD 181] := by

intro k

induction’ k with k ih

· norm_num [Int.ModEq] at h2 ⊢
<;> simpa [abase, arec] using h2

· have h5 := h1 (10 * k + 5)

have h6 := h1 (10 * k + 6)

have h7 := h1 (10 * k + 7)

have h8 := h1 (10 * k + 8)

have h9 := h1 (10 * k + 9)

have h10 := h1 (10 * k + 10)

norm_num [Int.ModEq] at h5 h6 h7 h8 h9 h10 ih ⊢
<;> ring_nf at * <;> omega

have h5 : (a 2015 : Z) ≡ 0 [ZMOD 181] := by

have h6 : (a (10 * 201 + 5) : Z) ≡ 0 [ZMOD 181] := h4 201

norm_num at h6 ⊢
<;> simpa [add_assoc] using h6

exact h5
exact Int.dvd_of_emod_eq_zero h3

Listing 12: Original Proof (Length 324)

theorem putnam_2015_a2

(a : N → Z)

(abase : a 0 = 1 ∧ a 1 = 2)

(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))

: Odd ((181) : N) ∧ ((181) : N).Prime ∧ ((((181) : N) : Z) | a 2015) := by

constructor

· decide
constructor

· norm_num [Nat.Prime]

rw [show 2015 = 10 * 202 - 5 by norm_num]

have h1 : ∀ n : N, a (10 * n + 5) ≡ 0 [ZMOD 181] := by

intro n

induction’ n with k ih

· norm_num [abase, arec, Int.ModEq]

· rw [Nat.mul_succ]

simp_all [Int.ModEq, arec]

omega

have h2 := h1 201

exact Int.dvd_of_emod_eq_zero h2

Listing 13: Simplified Proof (Length 82)

38

theorem imo_1960_p2

(x : R)

(h0 : 0 ≤ 1 + 2 * x)

(h1 : (1 - Real.sqrt (1 + 2 * x))^2 ̸= 0)

(h2 : (4 * x^2) / (1 - Real.sqrt (1 + 2*x))^2 < 2*x + 9)

(h3 : x ̸= 0) :

-(1 / 2) ≤ x ∧ x < 45 / 8 := by

constructor

· nlinarith [sq_nonneg (x + 1 / 2)]

· set s := Real.sqrt (1 + 2 * x) with hs

have h51 : 0 ≤ 1 + 2 * x := h0
have h52 : s ≥ 0 := Real.sqrt_nonneg _

have h53 : s ^ 2 = 1 + 2 * x := by

rw [hs]

rw [Real.sq_sqrt] <;> linarith

have h54 : (1 - s) ^ 2 ̸= 0 := by simpa [hs] using h1
have h55 : s ̸= 1 := by

intro h

have h551 : (1 - s) ^ 2 = 0 := by

rw [h]

norm_num

contradiction

have h56 : (s + 1) ^ 2 * (s - 1) ^ 2 = (s ^ 2 - 1) ^ 2 := by

ring

have h57 : (s ^ 2 - 1 : R) ^ 2 = 4 * x ^ 2 := by

rw [h53]
ring

have h58 : (4 : R) * x ^ 2 / (s - 1) ^ 2 = (s + 1) ^ 2 := by

have h581 : (s - 1 : R) ^ 2 ̸= 0 := by

intro h

have h582 : (1 - s : R) ^ 2 = 0 := by

calc

(1 - s : R) ^ 2 = (s - 1 : R) ^ 2 := by ring

_ = 0 := by rw [h]

contradiction

field_simp [h581] at h57 ⊢
nlinarith

have h59 : (4 : R) * x ^ 2 / (1 - s) ^ 2 = (s + 1) ^ 2 := by

rw [← h58]
ring

nlinarith [sq_nonneg (s - 1)]

Listing 14: Original Proof (Length 330)

theorem imo_1960_p2

(x : R)

(h0 : 0 ≤ 1 + 2 * x)

(h1 : (1 - Real.sqrt (1 + 2 * x))^2 ̸= 0)

(h2 : (4 * x^2) / (1 - Real.sqrt (1 + 2*x))^2 < 2*x + 9)

(h3 : x ̸= 0) :

-(1 / 2) ≤ x ∧ x < 45 / 8 := by

constructor

· nlinarith [sq_nonneg (x + 1 / 2)]

· have h57 : (4 : R) * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 = (1 + Real.sqrt (1 + 2 *

↪→ x)) ^ 2 := by

have h58 : (1 - Real.sqrt (1 + 2 * x)) ^ 2 ̸= 0 := by assumption

field_simp [h58]

nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption)]

nlinarith [sq_sqrt (show 0 ≤ 1 + 2 * x by assumption),

Real.sqrt_nonneg (1 + 2 * x)]

Listing 15: Simplified Proof (Length 125)

39

theorem putnam_1990_a1

(T : N → Z)

(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)

(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n) :

T = ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N → Z) × (N → Z)).1 + ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N → Z) × (N → Z)

↪→).2 :=

by

have h_main : ∀ (n : N), T n = (n ! : Z) + 2 ^ n := by

intro n

have h1 : T n = (n ! : Z) + 2 ^ n := by

have h2 : ∀ n : N, T n = (n ! : Z) + 2 ^ n := by

intro n

induction n using Nat.strong_induction_on with

| h n ih =>

match n with

| 0 =>

norm_num [hT012]

<;>

simp_all [Nat.factorial]

<;>

norm_num

| 1 =>

norm_num [hT012]

<;>

simp_all [Nat.factorial]

<;>

norm_num

| 2 =>

norm_num [hT012]

<;>

simp_all [Nat.factorial]

<;>

norm_num

| n + 3 =>

have h3 := hTn n

have h4 := ih n (by omega)

have h5 := ih (n + 1) (by omega)

have h6 := ih (n + 2) (by omega)

simp [h4, h5, h6, pow_add, pow_one, Nat.factorial_succ, Nat.mul_add, Nat.add_mul] at h3 ⊢
<;>

ring_nf at h3 ⊢ <;>

norm_cast at h3 ⊢ <;>

simp_all [Nat.factorial_succ, pow_add, pow_one, mul_assoc]

<;>

ring_nf at * <;>

norm_num at * <;>

nlinarith

exact h2 n

exact h1
have h_final : T = ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N → Z) × (N → Z)).1 + ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N → Z) ×

↪→ (N → Z)).2 := by

funext n

have h1 : T n = (n ! : Z) + 2 ^ n := h_main n

simp [h1, Pi.add_apply]

<;> norm_cast <;> simp [Nat.cast_add] <;> ring_nf

apply h_final

theorem putnam_1990_a1

(T : N → Z)

(hT012 : T 0 = 2 ∧ T 1 = 3 ∧ T 2 = 6)

(hTn : ∀ n, T (n + 3) = (n + 7) * T (n + 2) - 4 * (n + 3) * T (n + 1) + (4 * n + 4) * T n)

↪→ :

T = ((fun n : N => (n)!, fun n : N => 2 ^ n) : (N → Z) × (N → Z)).1 + ((fun n : N =

↪→ > (n)!, fun n : N => 2 ^ n) : (N → Z) × (N → Z)).2 := by

ext n

induction’ n using Nat.strong_induction_on with n ih

match n with

| 0 => simp_all

| 1 => simp_all

| 2 => simp_all

| n + 3 =>

simp_all [Nat.factorial_succ]

ring_nf

Listing 16: Original Proof (Length 320) and Simplified Proof (Length 34)

40

theorem putnam_1968_a1

: 22/7 - Real.pi =
∫

x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by

have h_main : (
∫

x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = 22/7 - Real.pi := by

have h1 : (
∫

x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2)) = (
∫

x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) - 4 / (1 + x^2)) := by

have h11 : ∀ (x : R), x^4 * (1 - x)^4 / (1 + x^2) = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) - 4 / (1 + x^2) := by

intro x

have h12 : (1 + x^2 : R) ̸= 0 := by nlinarith

have h13 : x^4 * (1 - x)^4 = (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) * (1 + x^2) - 4 := by

ring_nf <;> nlinarith [sq_nonneg (x ^ 2), sq_nonneg (x ^ 3), sq_nonneg (x - 1), sq_nonneg (x + 1)]

have h14 : x^4 * (1 - x)^4 / (1 + x^2) = ((x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) * (1 + x^2) - 4) / (1 + x^2) := by

rw [h13]
rw [h14]
field_simp [h12] <;> ring_nf <;> field_simp [h12] <;> ring_nf

congr

ext x

rw [h11 x]

rw [h1]
have h2 : (

∫
x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R) - 4 / (1 + x^2)) = (

∫
x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R)) - (

∫
x

↪→ in (0)..1, (4 : R) / (1 + x^2)) := by

apply intervalIntegral.integral_sub

· apply Continuous.intervalIntegrable

continuity

· apply Continuous.intervalIntegrable

have h3 : Continuous (fun x : R => (4 : R) / (1 + x ^ 2)) := by

apply Continuous.div

· exact continuous_const

· exact Continuous.add continuous_const (continuous_pow 2)

· intro x

have h4 : (1 + x ^ 2 : R) ̸= 0 := by nlinarith

exact h4
exact h3

rw [h2]
have h3 : (

∫
x in (0)..1, (x^6 - 4*x^5 + 5*x^4 - 4*x^2 + 4 : R)) = (22 / 7 : R) := by

norm_num [integral_id, mul_comm] <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]

have h4 : (
∫

x in (0)..1, (4 : R) / (1 + x^2)) = Real.pi := by

have h41 : (
∫

x in (0)..1, (4 : R) / (1 + x ^ 2)) = 4 * (
∫

x in (0)..1, (1 : R) / (1 + x ^ 2)) := by

have h42 : (
∫

x in (0)..1, (4 : R) / (1 + x ^ 2)) = (
∫

x in (0)..1, 4 * (1 : R) / (1 + x ^ 2)) := by

congr

ext x <;> ring_nf

rw [h42]
have h43 : (

∫
x in (0)..1, 4 * (1 : R) / (1 + x ^ 2)) = 4 * (

∫
x in (0)..1, (1 : R) / (1 + x ^ 2)) := by

simp [intervalIntegral.integral_comp_mul_left (fun x => (1 : R) / (1 + x ^ 2))] <;>

norm_num <;> field_simp <;> ring_nf <;> norm_num <;> linarith [Real.pi_pos]

rw [h43]
rw [h41]
have h44 : (

∫
x in (0)..1, (1 : R) / (1 + x ^ 2)) = Real.pi / 4 := by

have h45 : (
∫

x in (0)..1, (1 : R) / (1 + x ^ 2)) = Real.arctan 1 - Real.arctan 0 := by

rw [integral_one_div_one_add_sq] <;> norm_num

rw [h45]
have h46 : Real.arctan 1 = Real.pi / 4 := by

norm_num [Real.arctan_one]

have h47 : Real.arctan 0 = 0 := by

norm_num [Real.arctan_zero]

rw [h46, h47] <;> ring_nf <;> norm_num

rw [h44] <;> ring_nf <;> norm_num

rw [h3, h4] <;> ring_nf <;> norm_num

have h_final : 22/7 - Real.pi =
∫

x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by

rw [h_main] <;> linarith [Real.pi_pos]

exact h_final

theorem putnam_1968_a1

: 22/7 - Real.pi =
∫

x in (0)..1, x^4 * (1 - x)^4 / (1 + x^2) := by

simp_rw [show ∀ x : R, x ^ 4 * (1 - x) ^ 4 / (1 + x ^2) = (x ^6 - 4 * x ^5 + 5 * x ^4 - 4 *

↪→ x ^2 + 4 - 4 / (1 + x ^2)) by

intro x

field_simp

ring]

ring_nf

norm_num

<;> linarith [Real.pi_pos]

Listing 17: Original Proof (Length 1097) and Simplified Proof (Length 76)

41

H Proof Speedup and Slowdown Analysis and Examples

H.1 Iterative Proof Shortening Results with Heartbeat Metric

Table 11 and Fig. 16 show the results of iterative proof shortening using proof length vs. heartbeats
as optimization metrics. Observe that while optimizing for heartbeats isn’t nearly as effective for
proof length, it still leads to considerable simplification.

Table 11: Comparison of Min@64 (rounded to nearest integer), reduction (%), Heartbeats@64
(in thousands), and reduction (%) across inference-time iterations for miniF2F and PutnamBench
proofs. Iterations 1–6 use 64 samples, and 7–8 use 1024 samples. The first group shows the standard
(length-optimized) setting; the second group shows the new (heartbeat-optimized) experiment.

Dataset Metric Orig Lint It 1 It 2 It 3 It 4 It 5 It 6 It 7* It 8*

miniF2F

Optimizing for Length
Min@64 334 302 144 126 121 117 106 104 88 75

Red@64 (%) 0.0 9.2 76.6 80.0 81.0 81.5 82.9 83.1 85.7 87.9

Optimizing for Heartbeats
Min@64 334 302 163 145 139 135 129 125 112 96

Red@64 (%) 0.0 9.2 71.3 74.8 75.8 76.3 76.9 77.4 79.0 81.3
HB@64 (K) 36.3 36.2 14.5 13.6 13.3 13.2 13.0 12.8 11.9 10.4
HB Red@64 0.0 0.2 43.3 46.7 48.2 48.5 48.8 49.6 51.5 57.0

Putnam

Optimizing for Length
Min@64 1468 1359 1123 1061 1024 1007 975 969 890 811

Red@64 (%) 0.0 7.4 34.8 40.0 42.5 43.6 46.4 47.1 52.2 57.2

Optimizing for Heartbeats
Min@64 1468 1359 1142 1092 1060 1043 1034 1031 974 904

Red@64 (%) 0.0 7.4 32.2 36.2 38.7 39.7 40.5 40.8 44.0 49.2
HB@64 (K) 221 219 199 157 155 140 136 136 122 111
HB Red@64 0.0 0.7 18.5 23.9 26.9 28.4 29.5 29.6 34.0 39.5

0 1 2 3 4 5 6 7* 8*
Iteration

60

120

180

240

300

Pr
oo

f L
en

gt
h

(
)

Min@64 (miniF2F)
Length Metric
Heartbeats Metric

0 1 2 3 4 5 6 7* 8*
Iteration

20

40

60

80

%
 R

ed
uc

tio
n

(
)

Red@64 (miniF2F)

Length Metric
Heartbeats Metric

0 1 2 3 4 5 6 7* 8*
Iteration

900

1050

1200

1350

Pr
oo

f L
en

gt
h

(
)

Min@64 (Putnam)
Length Metric
Heartbeats Metric

0 1 2 3 4 5 6 7* 8*
Iteration

15

30

45

60

%
 R

ed
uc

tio
n

(
)

Red@64 (Putnam)

Length Metric
Heartbeats Metric

Figure 16: Optimizing for length vs. heartbeats

42

H.2 Examples of Proof Speedup and Slowdown after Simplification

We analyze two examples of proof speedup and slowdown. In Listing 18, we observe that the
original proof uses an extraneous amount of tactics within nlinarith in order to prove the main
conjecture. By removing a majority of these, the simplified proof achieves a 4.7x speedup. In Listing
19, we observe a more extreme case, where the original proof is significantly overcomplicated and
can be reduced to one omega invocation. Goedel-Prover-V2-32B never found this single-tactic
proof (with 64 samples) and instead produces proofs with many unnecessary subgoals, leading to
a proof with slow execution time.

In several occurrences, we observe that simplified proofs can be significantly slower than the
original proof. This is usually because the simplified proof is notationally shorter, but uses a slower
approach to complete the proof. For example, in Listing 20, ProofOptimizer finds a shorter proof,
but the proof is reliant on simp all, Finset.sum range succ, and linarith, which expand the
goal into large proof terms that are time-consuming, causing the new proof to be over 10× slower.
Another example is shown in Listing 21. Here, the original proof first iterates over all m ≤ 71
with interval cases m, tries to simplify using omega, and then iterates over all n ≤ 71 with
interval cases n. ProofOptimizer, however, removes the try omega, directly doing an exhaustive
search over (m, n). The try omega statement in the original proof made it much faster, removing
69 of the 71 goals, whereas the simplified proof had to iterate through n for these goals.

theorem imo_1983_p6 -- Original Proof, Time: 5.57s

(a b c : R)

(h0 : 0 < a ∧ 0 < b ∧ 0 < c)

(h1 : c < a + b)

(h2 : b < a + c)

(h3 : a < b + c) :

0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by

have h_main : 0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by

nlinarith [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a),

mul_nonneg h0.1.le h0.2.1.le, mul_nonneg h0.2.1.le h0.2.2.le, mul_nonneg h0.2.2.le

↪→ h0.1.le,

mul_nonneg (sq_nonneg (a - b)) h0.2.2.le, mul_nonneg (sq_nonneg (b - c)) h0.1.le,

mul_nonneg (sq_nonneg (c - a)) h0.2.1.le, mul_pos h0.1 h0.2.1, mul_pos h0.2.1 h0.2.2,

mul_pos h0.2.2 h0.1, mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2),

mul_pos (sub_pos.mpr h2) (sub_pos.mpr h3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1),

sq_nonneg (a + b - 2 * c), sq_nonneg (b + c - 2 * a), sq_nonneg (c + a - 2 * b)]

exact h_main

theorem imo_1983_p6 -- Simplified Proof, Time: 1.20s

(a b c : R)

(h0 : 0 < a ∧ 0 < b ∧ 0 < c)

(h1 : c < a + b)

(h2 : b < a + c)

(h3 : a < b + c) :

0 ≤ a^2 * b * (a - b) + b^2 * c * (b - c) + c^2 * a * (c - a) := by

nlinarith [mul_pos (sub_pos.mpr h1) (sub_pos.mpr h2), mul_pos (sub_pos.mpr h2) (sub_pos.mpr

↪→ h3), mul_pos (sub_pos.mpr h3) (sub_pos.mpr h1), sq_nonneg (a - b), sq_nonneg (b - c),

↪→ sq_nonneg (c - a)]

Listing 18: Example of Speedup after Simplification (orig: 5.6s, new: 1.2s)

43

theorem mathd_numbertheory_765 -- Original Proof, Time: 2.50s

(x : Z)

(h0 : x < 0)

(h1 : (24 * x) % 1199 = 15) :

x ≤ -449 := by

have h_main : x ≤ -449 := by

by_contra! h

have h2 : -448 ≤ x := by linarith

have h3 : x < 0 := h0
have h4 : (24 * x) % 1199 = 15 := h1
have h5 : x ≥ -448 := by linarith

have h6 : x ≤ -1 := by

omega

-- We will check all possible values of x from -448 to -1 and show that none satisfy (24 *

↪→ x) % 1199 = 15

have h7 : False := by

-- Use the fact that x is between -448 and -1 to check each possible value

have h8 : x ≥ -448 := by linarith

have h9 : x ≤ -1 := by omega

-- Use interval_cases to check each possible value of x

interval_cases x <;> norm_num [Int.mul_emod, Int.add_emod] at h4 ⊢ <;> omega

exact h7
exact h_main

theorem mathd_numbertheory_765 -- Simplified Proof, Time: 0.50s

(x : Z)

(h0 : x < 0)

(h1 : (24 * x) % 1199 = 15) :

x ≤ -449 := by

omega

Listing 19: Example of Speedup after Simplification (orig: 2.5s, new: 0.5s)

44

theorem aime_1984_p1 -- Original Proof, Time: 0.91s

(u : N → Q)

(h0 : ∀ n, u (n + 1) = u n + 1)

(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :

Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by

have h2 : ∀ (n : N), u n = u 0 + n := by

(. . . 14 lines omitted)

have h3 : 98 * u 0 + 4851 = 137 := by

have h4 : Σ k in Finset.range 98, u (k.succ) = 137 := h1
have h5 : Σ k in Finset.range 98, u (k.succ) = Σ k in Finset.range 98, (u 0 + (k.succ : Q

↪→)) := by

apply Finset.sum_congr rfl

intro k _

rw [h2 (k.succ)]

<;> simp [Nat.cast_add, Nat.cast_one]

<;> ring_nf

<;> norm_num

rw [h5] at h4
have h6 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = 98 * u 0 + 4851 := by

have h7 : Σ k in Finset.range 98, (u 0 + (k.succ : Q)) = Σ k in Finset.range 98, (u 0 :

↪→ Q) + Σ k in Finset.range 98, (k.succ : Q) := by

rw [Finset.sum_add_distrib]

rw [h7]

have h8 : Σ k in Finset.range 98, (u 0 : Q) = 98 * u 0 := by

simp [Finset.sum_const, Finset.card_range]

<;> ring_nf

rw [h8]

have h9 : Σ k in Finset.range 98, (k.succ : Q) = 4851 := by

norm_num [Finset.sum_range_succ, Finset.sum_range_succ, Finset.sum_range_succ]

<;>

rfl

rw [h9]

<;> ring_nf

rw [h6] at h4
norm_num at h4 ⊢
<;> linarith

have h4 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 49 * u 0 + 2450 := by

-- (. . . 25 lines omitted)

have h5 : 49 * u 0 = -2357 := by

-- (. . . 6 lines omitted)

have h6 : Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by

-- (. . . 4 lines omitted)

linarith

exact h6

theorem aime_1984_p1 -- Simplified Proof, Time: 10.84s

(u : N → Q)

(h0 : ∀ n, u (n + 1) = u n + 1)

(h1 : Σ k ∈ Finset.range 98, u k.succ = 137) :

Σ k ∈ Finset.range 49, u (2 * k.succ) = 93 := by

simp_all [Finset.sum_range_succ]

linarith

Listing 20: Example of Slowdown after Simplification (orig: 0.9s, new: 10.8s)

45

theorem mathd_numbertheory_711 -- Original Proof, 4.87s

(m n : N)

(h0 : 0 < m ∧ 0 < n)

(h1 : Nat.gcd m n = 8)

(h2 : Nat.lcm m n = 112) :

72 ≤ m + n := by

have h_product : m * n = 896 := by

-- (. . . 5 lines omitted)

have h_main : 72 ≤ m + n := by

have h3 : 0 < m := h0.1

have h4 : 0 < n := h0.2

have h5 : m * n = 896 := h_product

have h6 : Nat.gcd m n = 8 := h1
have h7 : Nat.lcm m n = 112 := h2
have h8 : m + n ≥ 72 := by

by_contra! h

-- (. . . 4 lines omitted)

have h11 : m ≤ 71 := by nlinarith

have h12 : n ≤ 71 := by nlinarith

interval_cases m <;> norm_num at h5 ⊢ <;>

(try omega) <;>

(try {

interval_cases n <;> norm_num at h5 h6 h7 ⊢ <;>

-- (. . . 5 lines omitted)

}) <;>

-- (. . . 5 lines omitted)

exact h8
exact h_main

theorem mathd_numbertheory_711 -- Simplified Proof, 74.63s

(m n : N)

(h0 : 0 < m ∧ 0 < n)

(h1 : Nat.gcd m n = 8)

(h2 : Nat.lcm m n = 112) :

72 ≤ m + n := by

have : m * n = 896 := by

rw [← Nat.gcd_mul_lcm m n]

simp_all

by_contra!

have : m ≤ 71 := by nlinarith

have : n ≤ 71 := by nlinarith

interval_cases m <;> interval_cases n <;> simp_all

Listing 21: Example of Slowdown after Simplification (orig: 4.9s, new: 74.6s)

46

I Derivation of Closed Form for min@k and max@k

In this section, we derive the closed form expression we use for estimating max@k from n samples
based off the classic pass@k metric:

max@k =
1
(n

k)
∑
i≤n

(
i− 1
k− 1

)
xi.

Let X be a real random variable, X1, . . . , Xk independent realizations of X and X(k) = maxi≤k Xi
their maximum. We would like to give an estimator for E[X(k)] given n ≥ k independent samples
x1 ≤ . . . ≤ xn of X sorted by size.

Consider the estimator M = 1
(n

k)
∑i≤n (

i−1
k−1)xi, with the idea being that there exist (n

k) ways to choose

k out of the n samples overall, out of which (i−1
k−1) select the i-th and then k− 1 with a smaller index.

We compute

Exi

[
1
(n

k)
∑
i≤n

(
i− 1
k− 1

)
xi

]
= Exi

 1
(n

k)
∑

I⊆{1,...,n},|I|=k
xmax I


=

1
(n

k)
∑

I⊆{1,...,n},|I|=k
Exi [xmax I]

=
1
(n

k)
∑

I⊆{1,...,n},|I|=k
Exi

[
max

j∈I
xj

]
=

1
(n

k)
∑

I⊆{1,...,n},|I|=k
E
[

X(k)

]
= E

[
X(k)

]
by the counting argument explained above, linearity of expectation, ordering of the xi and indepen-
dence.

Note that this is a generalization of the pass@k metric, which covers the case of Bernoulli distributed
X (Chen et al., 2021).

We recommend using a numerically stable implementation that computes the ratio
(i−1

k−1)

(n
k)

by canceling

a (k− 1)! factor and pairing up numerator and denominator factors.

Moreover, the min@k estimator can be obtained as min@k(x1, . . . , xn) = −max@k(−x1, . . . ,−xn).

47

J Hyperparameters

In this section, we detail the hyperparameters we use throughout our various training and inference
experiments. Prompts can be found in the next section, Appendix K.

Iterative Training (Sec. 3.1.1): For each round of SFT, we use an effective batch size of 64 (2 nodes,
8 H100/node, 4 gradient accumulation steps) and learning rate 1e-5. We use a cosine scheduler
with minimum learning rate 1e-8 and 100 steps of warm-up starting from 1e-30. For inference, we
use τ = 1.0 and top-p 0.95.

Reinforcement learning (Sec 3.1.2): Our setup is asynchronous online reinforcement learning with
16 trainer and 16 worker GPUs, and 16 environment copies per worker GPU. We use a global
training batch size of 32 (local batch size 2 per trainer), a constant learning rate of 6e-8 following
a linear warmup over 200 steps, a GRPO group size of 8, mean normalization but no variance
normalziation, no KL penalty and model updates sent to workers every 100 steps. Workers use For
inference, we use τ = 1.0 and top-p 1.0, and evaluations use τ = 1.0 and top-p 0.95.

For test-time reinforcement learning we use the same settings but halve the number of trainers and
workers.

Execution Feedback and Goedel-Prover for Repair (Sec. 4.2): We use temperature τ = 0.2 and
top-p 0.95 with a maximum prompt length of 8192 and a maximum generation length of 32768.

Iterative Shortening (Sec. 4.3): For iterations 1 through 6, we use temperature τ = 1.0 and top-p
0.95. We increase the temperature to τ = 1.2 for iteration 7, and to τ = 1.5 for iteration 8. We
find that the higher temperatures in later iterations are helpful for increasing diversity with 1024
samples.

Lean Base Model (Sec. A.1): We use an effective batch size of 512 (2 nodes, 8 H100/node, 32
gradient accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30.
We train with a maximum sequence length of 8192 for 2000 steps.

Proof Sketching (Sec. A.2): We use an effective batch size of 64 (2 nodes, 8 H100/node, 4 gradient
accumulation steps) and learning rate 1e-5 with 100 steps of warm-up starting from 1e-30. We
train with a maximum sequence length of 8192 for 50 steps. Evaluation is done with temperature
τ = 0.8 and top-p 0.95.

Comparison with Leading Models (Sec. D): For our model and Qwen2.5-32B, we use τ = 1.0 and
top-p 0.95. For GPT-4o and Gemini-2.5-Pro, we use the default settings with τ = 1.0.

48

K Prompts

K.1 Proof Simplification Prompt

You are given a correct Lean 4 proof of a mathematical theorem.

Your goal is to simplify and clean up the proof, making it shorter and more readable while ensuring it

↪→ is still correct.

Here is the original proof:

‘‘‘lean4

{statement}

‘‘‘

Now, provide your simplified proof. Do NOT modify the theorem or header, and surround your proof in

↪→ ‘‘‘lean4 and ‘‘‘ tags.

Listing 22: Zero-shot Proof Sketching Prompt

K.2 Proof Sketching Prompts

Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the

↪→ structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.

2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements for

↪→ clarity. Include all core steps from the natural language solution.

3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof skeleton

↪→ would compile successfully in Lean 4.

4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:

{problem}

Solution:

{solution}

Lean 4 Statement:

‘‘‘lean4

{statement}

‘‘‘

Now, provide your Lean 4 proof sketch. Do NOT modify the theorem or header, and surround your proof

↪→ sketch in ‘‘‘lean4 and ‘‘‘ tags.

Listing 23: Zero-shot Proof Sketching Prompt

Your task is to translate a natural language math solution into a Lean 4 proof sketch that follows the

↪→ structure of the natural language solution. Follow these guidelines:

1. Analyze the natural language solution and identify the key steps.

2. Translate each key step into Lean 4 syntax, structuring your proof using ’have’ statements for

↪→ clarity. Include all core steps from the natural language solution.

3. Use ’sorry’ to replace individual proofs of lower-level steps, ensuring that your proof skeleton

↪→ would compile successfully in Lean 4.

4. Surround your Lean 4 proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Here is an example:

49

Problem:

Prove that if p, q are primes such that q is divisible by p, then p must be equal to q.

Solution:

Since q is prime, it only has 2 divisors: 1 and itself. Therefore, since p divides q, either $p=1$ or

↪→ $p=q$. Because p is a prime, $p \ne 1$, so $p=q$.

Lean 4 Statement:

‘‘‘lean4

import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by

↪→ sorry

‘‘‘

Lean 4 Proof Sketch:

‘‘‘lean4

import Mathlib

theorem prime_divides_prime_equal (p q : N) (hp : Prime p) (hq : Prime q) (h : p | q) : p = q := by

-- Lemma 1: Since q is prime, it only has 2 divisors: 1 and itself.

have lemma1 : p = 1 ∨ p = q := by

sorry

-- Lemma 2: Since p is prime, p ̸= 1.

have lemma2 : p ̸= 1 := by

sorry

-- Now, do case analysis on lemma1 to conclude p = q.

cases lemma1 with

| inl h_left =>

contradiction

| inr h_right =>

exact h_right

‘‘‘

Now, it is your turn to provide your Lean 4 proof sketch for a new problem. Do NOT modify the theorem

↪→ or header, and surround your proof sketch in ‘‘‘lean4 and ‘‘‘ tags.

Problem:

{problem}

Solution:

{solution}

Lean 4 Statement:

‘‘‘lean4

{statement}

‘‘‘

Lean 4 Proof Sketch

Listing 24: One-shot Proof Sketching Prompt

K.3 Goedel-Prover Repair Prompt

In Listing 25, use a modified version of Goedel-Prover’s repair prompt found in their codebase.
The main difference is that because we do not have proofs annotated with CoT’s, our lean proof

only contains a proof.

50

https://github.com/Goedel-LM/Goedel-Prover-V2

Complete the following Lean 4 code:

‘‘‘lean4

{formal_statement}‘‘‘

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan

↪→ outlining the main proof steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the

↪→ construction of the final formal proof.

Here is the proof:

‘‘‘lean4

{lean_proof}‘‘‘

The proof (Round 1) is not correct. Following is the compilation error message, where we use <error></

↪→ error> to signal the position of the error.

{error_message_for_prev_round}

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed analysis of

↪→ the error message.

Listing 25: Goedel-Prover Repair Prompt

51

L Python Code for Proof Length

import re

from collections import Counter

def proof_length(statement_and_proof):

lean_operators = [’:=’, ’!=’, ’&&’, ’-.’, ’->’, ’←’, ’..’, ’. . .’, ’::’, ’:>’,

’<;>’, ’;;’, ’==’, ’||’, ’=>’, ’<=’, ’>=’, ’−1’, ’?_’]

lean_operators_spaced = [’ ’.join(conn) for conn in lean_operators]

lean_operators_dict = dict(zip(lean_operators_spaced, lean_operators))

def lexer(lean_snippet):

tokenized_lines = []

for line in lean_snippet.splitlines():

tokens = []

token = ’’

for ch in line:

if ch == ’ ’:

if token:

tokens.append(token)

token = ’’

elif str.isalnum(ch) or (ch in "_.’"):

token += ch

else:

if token:

tokens.append(token)

token = ’’

tokens.append(ch)

if token:

tokens.append(token)

tokenized_line = ’ ’.join(tokens)

for conn in lean_operators_spaced:

if conn in tokenized_line:

tokenized_line = tokenized_line.replace(conn, lean_operators_dict[conn])

tokenized_lines.append(tokenized_line)

return ’\n’.join(tokenized_lines)

def remove_statement(statement_and_proof):

if ":= by" in statement_and_proof:

return statement_and_proof.split(":= by", maxsplit=1)[1].strip()

return statement_and_proof.split(":=", maxsplit=1)[1].strip()

def remove_comments(lean_snippet):

multi-line comments

lean_snippet = re.sub(r" */-.*-/", "", lean_snippet, flags=re.DOTALL)

single-line comments

lean_snippet = re.sub(r" *--.*", "", lean_snippet)

return lean_snippet

try:

proof = remove_statement(statement_and_proof)

proof = remove_comments(proof)

proof_tokenized = lexer(proof)

return sum([len(l.split(’ ’)) for l in proof_tokenized.splitlines()])

except:

return 10**9

52

	Introduction
	Proof Simplification: Task and Metrics
	ProofOptimizer: LLMs for Proof Simplification
	Training
	ProofOptimizer-ExpIt: Expert Iteration
	ProofOptimizer-RL: Online Reinforcement Learning

	Inference-Time Techniques

	Experiments
	Expert Iteration vs. RL vs. Test-Time RL
	Analysis of Repair with Execution Feedback
	Iterative Proof Shortening

	Additional Benefits of Proof Simplification
	Training on Simplified Proofs Improves Generation
	Simplified Proofs Have a Shorter Execution Time
	Optimizing for Heartbeats instead of Proof Length

	Related Works
	Conclusion
	Acknowledgments
	Lean Base Model and Proof Simplification Data Details
	General Base Model for Lean
	Generating a Dataset of Theorems and Proofs for Shortening
	Statistics of Proof Simplification Training Dataset

	Training Metrics throughout RL
	Full Results and Extended Analysis of Iterative Proof Shortening
	Table of Iterative Proof Shortening Results
	Effect of k on min@k and red@k throughout simplification
	Details on Seed-Prover IMO Proof Shortening

	Comparison with Qwen2.5, GPT-4o, and Gemini-2.5-Pro
	Full Results and Extended Analysis of Repair with Execution Feedback
	Evaluation Dataset Details
	Examples of Proofs Simplified by ProofOptimizer
	Proof Speedup and Slowdown Analysis and Examples
	Iterative Proof Shortening Results with Heartbeat Metric
	Examples of Proof Speedup and Slowdown after Simplification

	Derivation of Closed Form for min@k and max@k
	Hyperparameters
	Prompts
	Proof Simplification Prompt
	Proof Sketching Prompts
	Goedel-Prover Repair Prompt

	Python Code for Proof Length

